The Capsule of Porphyromonas gingivalis Leads to a Reduction in the Host Inflammatory Response, Evasion of Phagocytosis, and Increase in Virulence

Author:

Singh Amrita1,Wyant Tiana1,Anaya-Bergman Cecilia12,Aduse-Opoku Joseph3,Brunner Jorg4,Laine Marja L.4,Curtis Michael A.3,Lewis Janina P.156

Affiliation:

1. The Philips Institute of Oral and Craniofacial Molecular Biology, Virginia Commonwealth University, Richmond, Virginia

2. University of San Luis, San Luis, Argentina

3. Centre for Immunology and Infectious Disease, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom

4. Departments of Preventive Dentistry and Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), Universiteit van Amsterdam and Vrije Universiteit, Amsterdam, The Netherlands

5. Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, Virginia

6. Department of Biochemistry, Virginia Commonwealth University, Richmond, Virginia

Abstract

ABSTRACT Periodontal disease is a chronic oral inflammatory disease that is triggered by bacteria such as Porphyromonas gingivalis . P. gingivalis strains exhibit great heterogeneity, with some strains being encapsulated while others are nonencapsulated. Although the encapsulated strains have been shown to be more virulent in a mouse abscess model, so far the role of the capsule in P. gingivalis interactions with host cells is not well understood and its role in virulence has not been defined. Here, we investigated the contribution of the capsule to triggering a host response following microbial infection, as well as its protective role following bacterial internalization by host phagocytic cells with subsequent killing, using the encapsulated P. gingivalis strain W50 and its isogenic nonencapsulated mutant, PgC. Our study shows significant time-dependent upregulation of the expression of various groups of genes in macrophages challenged with both the encapsulated and nonencapsulated P. gingivalis strains. However, cells infected with the nonencapsulated strain showed significantly higher upregulation of 9 and 29 genes at 1 h and 8 h postinfection, respectively, than cells infected with the encapsulated strain. Among the genes highly upregulated by the nonencapsulated PgC strain were ones coding for cytokines and chemokines. Maturation markers were induced at a 2-fold higher rate in dendritic cells challenged with the nonencapsulated strain for 4 h than in dendritic cells challenged with the encapsulated strain. The rates of phagocytosis of the nonencapsulated P. gingivalis strain by both macrophages and dendritic cells were 4.5-fold and 7-fold higher, respectively, than the rates of phagocytosis of the encapsulated strain. On the contrary, the survival of the nonencapsulated P. gingivalis strain was drastically reduced compared to the survival of the encapsulated strain. Finally, the encapsulated strain exhibited greater virulence in a mouse abscess model. Our results indicate that the P. gingivalis capsule plays an important role in aiding evasion of host immune system activation, promoting survival of the bacterium within host cells, and increasing virulence. As such, it is a major virulence determinant of P. gingivalis.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3