Identification and Characterization of the Capsular Polysaccharide (K-Antigen) Locus of Porphyromonas gingivalis

Author:

Aduse-Opoku Joseph1,Slaney Jennifer M.1,Hashim Ahmed1,Gallagher Alexandra1,Gallagher Robert P.1,Rangarajan Minnie1,Boutaga Khalil2,Laine Marja L.2,Van Winkelhoff Arie J.2,Curtis Michael A.1

Affiliation:

1. MRC Molecular Pathogenesis Group, Centre for Infectious Disease, Institute of Cell and Molecular Science, Barts and the London, Queen Mary's School of Medicine and Dentistry, 4 Newark Street, London E1 2AT, United Kingdom

2. Academic Centre for Dentistry Amsterdam (ACTA), Department of Oral Microbiology, Universiteit van Amsterdam and Vrije Universiteit, Amsterdam, The Netherlands

Abstract

ABSTRACT Capsular polysaccharides of gram-negative bacteria play an important role in maintaining the structural integrity of the cell in hostile environments and, because of their diversity within a given species, can act as useful taxonomic aids. In order to characterize the genetic locus for capsule biosynthesis in the oral gram-negative bacterium Porphyromonas gingivalis , we analyzed the genome of P. gingivalis W83 which revealed two candidate loci at PG0106 - PG0120 and PG1135-PG1142 with sufficient coding capacity and appropriate gene functions based on comparisons with capsule-coding loci in other bacteria. Insertion and deletion mutants were prepared at PG0106-PG0120 in P. gingivalis W50—a K1 serotype. Deletion of PG0109-PG0118 and PG0116-PG0120 both yielded mutants which no longer reacted with antisera to K1 serotypes. Restriction fragment length polymorphism analysis of the locus in strains representing all six K-antigen serotypes and K strains demonstrated significant variation between serotypes and limited conservation within serotypes. In contrast, PG1135-PG1142 was highly conserved in this collection of strains. Sequence analysis of the capsule locus in strain 381 (K strain) demonstrated synteny with the W83 locus but also significant differences including replacement of PG0109-PG0110 with three unique open reading frames, deletion of PG0112-PG0114, and an internal termination codon within PG0106, each of which could contribute to the absence of capsule expression in this strain. Analysis of the Arg-gingipains in the capsule mutants of strain W50 revealed no significant changes to the glycan modifications of these enzymes, which indicates that the glycosylation apparatus in P. gingivalis is independent of the capsule biosynthetic machinery.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3