Metabolism of Formate in Methanobacterium formicicum

Author:

Schauer N. L.1,Ferry J. G.1

Affiliation:

1. Anaerobe Laboratory, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061

Abstract

Methanobacterium formicicum strain JF-1 was cultured with formate as the sole energy source in a pH-stat fermentor. Growth was exponential, and both methane production and formate consumption were linear functions of the growth rate. Hydrogen was produced in only trace amounts, and the dissolved H 2 concentration of the culture medium was below 1 μM. The effect of temperature or pH on the rate of methane formation was studied with a single fermentor culture in mid-log phase that was grown with formate under standard conditions at 37°C and pH 7.6. Methane formation from formate occurred over the pH range from 6.5 to 8.6, with a maximum at pH 8.0. The maximum temperature of methanogenesis was 56°C. H 2 production increased at higher temperatures. Hydrogen and formate were consumed throughout growth when both were present in saturating concentrations. The molar growth yields were 1.2 ± 0.06 g (dry weight) per mol of formate and 4.8 ± 0.24 g (dry weight) per mol of methane. Characteristics were compared for cultures grown with either formate or H 2 -CO 2 as the sole energy source at 37°C and pH 7.6; the molar growth yield for methane of formate cultures was 4.8 g (dry weight) per mol, and that of H 2 -CO 2 cultures was 3.5 g (dry weight) per mol. Both formate and H 2 -CO 2 cultures had low efficiencies of electron transport phosphorylation; formate-cultured cells had greater specific activities of coenzyme F 420 than did H 2 -CO 2 -grown cultures. Hydrogenase, formate dehydrogenase, chromophoric factor F 342 , and low levels of formyltetrahydrofolate synthetase were present in cells cultured with either substrate. Methyl viologen-dependent formate dehydrogenase was found in the soluble fraction from broken cells.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 152 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3