Altering the Substrate Specificity of Polyhydroxyalkanoate Synthase 1 Derived from Pseudomonas putida GPo1 by Localized Semirandom Mutagenesis

Author:

Sheu Der-Shyan1,Lee Chia-Yin1

Affiliation:

1. Graduate Institute of Agricultural Chemistry, National Taiwan University, Taipei 106, Taiwan

Abstract

ABSTRACT The substrate specificity of polyhydroxyalkanoate (PHA) synthase 1 (PhaC1 Pp , class II) from Pseudomonas putida GPo1 (formerly known as Pseudomonas oleovorans GPo1) was successfully altered by localized semirandom mutagenesis. The enzyme evolution system introduces multiple point mutations, designed on the basis of the conserved regions of the PHA synthase family, by using PCR-based gene fragmentation with degenerate primers and a reassembly PCR. According to the opaqueness of the colony, indicating the accumulation of large amounts of PHA granules in the cells, 13 PHA-accumulating candidates were screened from a mutant library, with Pseudomonas putida GPp104 PHA as the host. The in vivo substrate specificity of five candidates, L1-6, D7-47, PS-A2, PS-C2, and PS-E1, was evaluated by the heterologous expression in Ralstonia eutropha PHB 4 supplemented with octanoate. Notably, the amount of 3-hydroxybutyrate (short-chain-length [SCL] 3-hydroxyalkanoate [3-HA] unit) was drastically increased in recombinants that expressed evolved mutant enzymes L1-6, PS-A2, PS-C2, and PS-E1 (up to 60, 36, 50, and 49 mol%, respectively), relative to the amount in the wild type (12 mol%). Evolved enzyme PS-E1, in which 14 amino acids had been changed and which was heterologously expressed in R. eutropha PHB 4, not only exhibited broad substrate specificity (49 mol% SCL 3-HA and 51 mol% medium-chain-length [MCL] 3-HA) but also conferred the highest PHA production (45% dry weight) among the candidates. The 3-HA and MCL 3-HA units of the PHA produced by R. eutropha PHB 4/pPS-E1 were randomly copolymerized in a single polymer chain, as analytically confirmed by acetone fractionation and the 13 C nuclear magnetic resonance spectrum.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3