Replacement of the catalytic nucleophile cysteine-296 by serine in class II polyhydroxyalkanoate synthase from Pseudomonas aeruginosa-mediated synthesis of a new polyester: identification of catalytic residues

Author:

AMARA Amro A.1,REHM Bernd H. A.1

Affiliation:

1. Institut für Molekulare Mikrobiologie und Biotechnologie der Westfälischen Wilhelms-Universität Münster, Corrensstraße 3, 48149 Münster, Germany

Abstract

The class II PHA (polyhydroxyalkanoate) synthases [PHAMCL synthases (medium-chain-length PHA synthases)] are mainly found in pseudomonads and catalyse synthesis of PHAMCLs using CoA thioesters of medium-chain-length 3-hydroxyfatty acids (C6–C14) as a substrate. Only recently PHAMCL synthases from Pseudomonas oleovorans and Pseudomonas aeruginosa were purified and in vitro activity was achieved. A threading model of the P. aeruginosa PHAMCL synthase PhaC1 was developed based on the homology to the epoxide hydrolase (1ek1) from mouse which belongs to the α/β-hydrolase superfamily. The putative catalytic residues Cys-296, Asp-452, His-453 and His-480 were replaced by site-specific mutagenesis. In contrast to class I and III PHA synthases, the replacement of His-480, which aligns with the conserved base catalyst of the α/β-hydrolases, with Gln did not affect in vivo enzyme activity and only slightly in vitro enzyme activity. The second conserved histidine His-453 was then replaced by Gln, and the modified enzyme showed only 24% of wild-type in vivo activity, which indicated that His-453 might functionally replace His-480 in class II PHA synthases. Replacement of the postulated catalytic nucleophile Cys-296 by Ser only reduced in vivo enzyme activity to 30% of wild-type enzyme activity and drastically changed substrate specificity. Moreover, the C296S mutation turned the enzyme sensitive towards PMSF inhibition. The replacement of Asp-452 by Asn, which is supposed to be required as general base catalyst for elongation reaction, did abolish enzyme activity as was found for the respective amino acid residue of class I and III enzymes. In the threading model residues Cys-296, Asp-452, His-453 and His-480 reside in the core structure with the putative catalytic nucleophile Cys-296 localized at the highly conserved γ-turns of the α/β-hydrolases. Inhibitor studies indicated that catalytic histidines reside in the active site. The conserved residue Trp-398 was replaced by Phe and Ala, respectively, which caused inactivation of the enzyme indicating an essential role of this residue. In the threading model this residue was found to be surface-exposed. No evidence for post-translational modification by 4-phosphopantetheine was obtained. Overall, these data suggested that in class II PHA synthases the conserved histidine which was found as general base catalyst in the catalytic triad of enzymes related to the α/β-hydrolase superfamily, was functionally replaced by His-453 which is conserved among all PHA synthases.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3