An Intronic Splicing Silencer Causes Skipping of the IIIb Exon of Fibroblast Growth Factor Receptor 2 through Involvement of Polypyrimidine Tract Binding Protein

Author:

Carstens Russ P.123,Wagner Eric J.4,Garcia-Blanco Mariano A.135

Affiliation:

1. Department of Genetics,1

2. Division of Nephrology,2

3. Department of Medicine,3

4. Program in Molecular Cancer Biology, 4 Duke University Medical Center, Durham, North Carolina 27710

5. Department of Microbiology, 5 and

Abstract

ABSTRACT Alternative splicing of fibroblast growth factor receptor 2 (FGF-R2) transcripts involves the mutually exclusive usage of exons IIIb and IIIc to produce two different receptor isoforms. Appropriate splicing of exon IIIb in rat prostate cancer DT3 cells requires a previously described cis element (ISAR, for “intronic splicing activator and repressor”) which represses the splicing of exon IIIc and activates the splicing of exon IIIb. This element is nonfunctional in rat prostate AT3 cells, which repress exon IIIb inclusion and splice to exon IIIc. We have now identified an intronic element upstream of exon IIIb that causes repression of exon IIIb splicing. Deletion of this element abrogates the requirement for ISAR in order for exon IIIb to be spliced in DT3 cells and causes inappropriate inclusion of exon IIIb in AT3 cells. This element consists of two intronic splicing silencer (ISS) sequences, ISS1 and ISS2. The ISS1 sequence is pyrimidine rich, and in vitro cross-linking studies demonstrate binding of polypyrimidine tract binding protein (PTB) to this element. Competition studies demonstrate that mutations within ISS1 that abolish PTB binding in vitro alleviate splicing repression in vivo. Cotransfection of a PTB-1 expression vector with a minigene containing exon IIIb and the intronic splicing silencer element demonstrate PTB-mediated repression of exon IIIb splicing. Furthermore, all described PTB isoforms were equally capable of mediating this effect. Our results support a model of splicing regulation in which exon IIIc splicing does not represent a default splicing pathway but rather one in which active repression of exon IIIb splicing occurs in both cells and in which DT3 cells are able to overcome this repression in order to splice exon IIIb.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

Reference66 articles.

1. A neuron-specific splicing switch mediated by an array of pre-mRNA repressor sites: evidence of a regulatory role for the polypyrimidine tract binding protein and a brain-specific PTB counterpart;Ashiya M.;RNA,1997

2. Murine polypyrimidine tract binding protein;Bothwell A.;J. Biol. Chem.,1991

3. Burge C. Tuschl T. Sharp P. Splicing of precursors to mRNAs by the spliceosomes The RNA world 2nd ed. Gesteland R. 1999 525 560 Cold Spring Harbor Laboratory Press Cold Spring Harbor N.Y

4. Regulation of alternative splicing in vivo by overexpression of antagonistic splicing factors;Caceres J.;Science,1994

5. Alternative splicing of fibroblast growth factor receptor 2 (FGF-R2) in human prostate cancer;Carstens R.;Oncogene,1997

Cited by 129 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3