High-Resolution Metatranscriptomics Reveals the Ecological Dynamics of Mosquito-Associated RNA Viruses in Western Australia

Author:

Shi Mang1,Neville Peter23,Nicholson Jay234,Eden John-Sebastian15,Imrie Allison3,Holmes Edward C.1ORCID

Affiliation:

1. Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Biological Sciences and Sydney Medical School, The University of Sydney, Sydney, Australia

2. Environmental Health Directorate, Public Health Division, Department of Health, Government of Western Australia, Perth, Australia

3. School of Biomedical Sciences, The University of Western Australia, Perth, Australia

4. Center for Vectorborne Diseases, Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, California, USA

5. Centre for Virus Research, The Westmead Institute for Medical Research, Sydney, Australia

Abstract

ABSTRACT Mosquitoes harbor a high diversity of RNA viruses, including many that impact human health. Despite a growing effort to describe the extent and nature of the mosquito virome, little is known about how these viruses persist, spread, and interact with both their hosts and other microbes. To address this issue we performed a metatranscriptomics analysis of 12 Western Australian mosquito populations structured by species and geographic location. Our results identified the complete genomes of 24 species of RNA viruses from a diverse range of viral families and orders, among which 19 are newly described. Comparisons of viromes revealed a striking difference between the two mosquito genera, with viromes of mosquitoes of the Aedes genus exhibiting substantially less diversity and lower abundances than those of mosquitoes of the Culex genus, within which the viral abundance reached 16.87% of the total non-rRNA. In addition, there was little overlap in viral diversity between the two genera, although the viromes were very similar among the three Culex species studied, suggesting that the host taxon plays a major role in structuring virus diversity. In contrast, we found no evidence that geographic location played a major role in shaping RNA virus diversity, and several viruses discovered here exhibited high similarity (95 to 98% nucleotide identity) to those from Indonesia and China. Finally, using abundance-level and phylogenetic relationships, we were able to distinguish potential mosquito viruses from those present in coinfecting bacteria, fungi, and protists. In sum, our metatranscriptomics approach provides important insights into the ecology of mosquito RNA viruses. IMPORTANCE Studies of virus ecology have generally focused on individual viral species. However, recent advances in bulk RNA sequencing make it possible to utilize metatranscriptomic approaches to reveal both complete virus diversity and the relative abundance of these viruses. We used such a metatranscriptomic approach to determine key aspects of the ecology of mosquito viruses in Western Australia. Our results show that RNA viruses are some of the most important components of the mosquito transcriptome, and we identified 19 new virus species from a diverse set of virus families. A key result was that host genetic background plays a more important role in shaping virus diversity than sampling location, with Culex species harboring more viruses at higher abundance than those from Aedes mosquitoes.

Funder

Department of Health | National Health and Medical Research Council

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3