Affiliation:
1. Centro de Biología Molecular “Severo Ochoa” (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
Abstract
ABSTRACT
The assembly of African swine fever virus (ASFV) at the cytoplasmic virus factories commences with the formation of precursor membranous structures, which are thought to be collapsed cisternal domains recruited from the surrounding endoplasmic reticulum (ER). This report analyzes the role in virus morphogenesis of the structural protein p54, a 25-kDa polypeptide encoded by the
E183L
gene that contains a putative transmembrane domain and localizes at the ER-derived envelope precursors. We show that protein p54 behaves in vitro and in infected cells as a type I membrane-anchored protein that forms disulfide-linked homodimers through its unique luminal cysteine. Moreover, p54 is targeted to the ER membranes when it is transiently expressed in transfected cells. Using a lethal conditional recombinant, vE183Li, we also demonstrate that the repression of p54 synthesis arrests virus morphogenesis at a very early stage, even prior to the formation of the precursor membranes. Under restrictive conditions, the virus factories appeared as discrete electron-lucent areas essentially free of viral structures. In contrast, outside the assembly sites, large amounts of aberrant zipper-like structures formed by the unprocessed core polyproteins pp220 and pp62 were produced in close association to ER cisternae. Altogether, these results indicate that the transmembrane structural protein p54 is critical for the recruitment and transformation of the ER membranes into the precursors of the viral envelope.
Publisher
American Society for Microbiology
Subject
Virology,Insect Science,Immunology,Microbiology
Cited by
91 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献