Peculiar H+Homeostasis of Saccharomyces cerevisiae during the Late Stages of Wine Fermentation

Author:

Viana Tiago,Loureiro-Dias Maria C.,Loureiro Virgílio,Prista Catarina

Abstract

ABSTRACTIntracellular pH (pHin) is a tightly regulated physiological parameter, which controls cell performance in all living systems. The purpose of this work was to evaluate if and how H+homeostasis is accomplished by an industrial wine strain ofSaccharomyces cerevisiaewhile fermenting real must under the harsh winery conditions prevalent in the late stages of the fermentation process, in particular low pH and high ethanol concentrations and temperature. Cells grown at 15, 25, and 30°C were harvested in exponential and early and late stationary phases. Intracellular pH remained in the range of 6.0 to 6.4, decreasing significantly only by the end of glucose fermentation, in particular at lower temperatures (pHin5.2 at 15°C), although the cells remained viable and metabolically active. The cell capability of extruding H+via H+-ATPase and of keeping H+out by means of an impermeable membrane were evaluated as potential mechanisms of H+homeostasis. At 30°C, H+efflux was higher in all stages. The most striking observation was that cells in late stationary phase became almost impermeable to H+. Even when these cells were challenged with high ethanol concentrations (up to 20%) added in the assay, their permeability to H+remained very low, being almost undetectable at 15°C. Comparatively, ethanol significantly increased the H+permeability of cells in exponential phase. Understanding the molecular and physiological events underlying yeast H+homeostasis at late stages of fermentations may contribute to the development of more robust strains suitable to efficiently produce a high-quality wine.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3