Affiliation:
1. Department of Microbiology and School of Ocean and Earth Sciences and Technology, Department of Oceanography,2 University of Hawaii, Honolulu, Hawaii 96822
Abstract
The incorporation of tritiated thymidine by five microbial ecosystems and the distribution of tritium into DNA, RNA, and protein were determined. All microbial assemblages tested exhibited significant labeling of RNA and protein (i.e., nonspecific labeling), as determined by differential acid-base hydrolysis. Nonspecific labeling was greatest in sediment samples, for which ≥95% of the tritium was recovered with the RNA and protein fractions. The percentage of tritium recovered in the DNA fraction ranged from 15 to 38% of the total labeled macromolecules recovered. Nonspecific labeling was independent of both incubation time and thymidine concentration over very wide ranges. Four different RNA hydrolysis reagents (KOH, NaOH, piperidine, and enzymes) solubilized tritium from cold trichloroacetic acid precipitates. High-pressure liquid chromatography separation of piperidine hydrolysates followed by measurement of isolated monophosphates confirmed the labeling of RNA and indicated that tritium was recovered primarily in CMP and AMP residues. We also evaluated the specificity of [2-
3
H]adenine incorporation into adenylate residues in both RNA and DNA in parallel with the [
3
H]thymidine experiments and compared the degree of nonspecific labeling by [
3
H]adenine with that derived from [
3
H]thymidine. Rapid catabolism of tritiated thymidine was evaluated by determining the disappearance of tritiated thymidine from the incubation medium and the appearance of degradation products by high-pressure liquid chromatography separation of the cell-free medium. Degradation product formation, including that of both volatile and nonvolatile compounds, was much greater than the rate of incorporation of tritium into stable macromolecules. The standard degradation pathway for thymidine coupled with utilization of Krebs cycle intermediates for the biosynthesis of amino acids, purines, and pyrimidines readily accounts for the observed nonspecific labeling in environmental samples.
Publisher
American Society for Microbiology
Subject
Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology
Cited by
33 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献