Author:
Wang Weijun,Mai-Gisondi Galina,Stogios Peter J.,Kaur Amrit,Xu Xiaohui,Cui Hong,Turunen Ossi,Savchenko Alexei,Master Emma R.
Abstract
ABSTRACTXylan-debranching enzymes facilitate the complete hydrolysis of xylan and can be used to alter xylan chemistry. Here, the family GH62 α-l-arabinofuranosidase fromStreptomyces thermoviolaceus(SthAbf62A) was shown to have a half-life of 60 min at 60°C and the ability to cleave α-1,3l-arabinofuranose (l-Araf) from singly substituted xylopyranosyl (Xylp) backbone residues in wheat arabinoxylan; low levels of activity on arabinan as well as 4-nitrophenyl α-l-arabinofuranoside were also detected. After selective removal of α-1,3l-Arafsubstituents from disubstituted Xylpresidues present in wheat arabinoxylan, SthAbf62A could also cleave the remaining α-1,2l-Arafsubstituents, confirming the ability of SthAbf62A to remove α-l-Arafresidues that are (1→2) and (1→3) linked to monosubstituted β-d-Xylpsugars. Three-dimensional structures of SthAbf62A and its complex with xylotetraose andl-arabinose confirmed a five-bladed β-propeller fold and revealed a molecular Velcro in blade V between the β1 and β21 strands, a disulfide bond between Cys27 and Cys297, and a calcium ion coordinated in the central channel of the fold. The enzyme-arabinose complex structure further revealed a narrow and seemingly rigidl-arabinose binding pocket situated at the center of one side of the β propeller, which stabilized the arabinofuranosyl substituent through several hydrogen-bonding and hydrophobic interactions. The predicted catalytic amino acids were oriented toward this binding pocket, and the catalytic essentiality of Asp53 and Glu213 was confirmed by site-specific mutagenesis. Complex structures with xylotetraose revealed a shallow cleft for xylan backbone binding that is open at both ends and comprises multiple binding subsites above and flanking thel-arabinose binding pocket.
Publisher
American Society for Microbiology
Subject
Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology
Cited by
44 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献