Phosphoprotein and nucleocapsid protein evolution of vesicular stomatitis virus New Jersey

Author:

Bilsel P A1,Rowe J E1,Fitch W M1,Nichol S T1

Affiliation:

1. Cell and Molecular Biology Program, School of Veterinary Medicine, University of Nevada, Reno 89557-0046.

Abstract

The entire phosphoprotein (P) and nucleocapsid (N) protein gene sequences and deduced amino acid sequences for 18 selected vesicular stomatitis virus isolates representative of the natural genetic diversity within the New Jersey serotype are reported. Phylogenetic analysis of the data using maximum parsimony allowed construction of evolutionary trees for the individual genes and the combined N, P, and glycoprotein (G) genes of these viruses. Virtually identical rates of nucleotide substitutions were found for each gene, indicating that evolution of these genes occurs at essentially the same rate. Although up to 19 and 17% sequence differences were evident in the P and N genes, respectively, no variation in gene length or evidence of recombinational rearrangements was found. However, striking evolutionary differences were observed among the amino acid sequences of vesicular stomatitis virus New Jersey N, P, and G proteins. The N protein amino acid sequence was the most highly conserved among the different isolates, indicating strong functional and structural constraints. Conversely, the P protein amino acid sequences were highly variable, indicating considerably fewer constraints or greater evolutionary pressure on the P protein. Much of the remarkable amino acid variability of the P protein resided in a hypervariable domain located between amino acids 153 and 205. The variability within this region would be consistent with it playing a structural role as a spacer to maintain correct conformational presentation of the separate active domains of this multifunctional protein. In marked contrast, the adjacent domain I of the P protein (previously thought to be under little evolutionary constraint) contained a highly conserved region. The colocalization of a short, potentially functional overlapping open reading frame to this region may explain this apparent anomaly.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3