Phase-Variable Control of Multiple Phenotypes in Acinetobacter baumannii Strain AB5075

Author:

Tipton Kyle A.1,Dimitrova Daniela1,Rather Philip N.12

Affiliation:

1. Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA

2. Research Service, Atlanta VA Medical Center, Decatur, Georgia, USA

Abstract

ABSTRACT Acinetobacter baumannii strain AB5075 produces colonies with two opacity phenotypes, designated opaque and translucent. These phenotypes were unstable and opaque and translucent colony variants were observed to interconvert at high frequency, suggesting that a phase-variable mechanism was responsible. The frequency of phase variation both within colonies and in broth cultures increased in a cell density-dependent manner and was mediated by the accumulation of an extracellular factor. This factor was distinct from the known A. baumannii signaling molecule 3-OH C 12 -homoserine lactone. Opaque and translucent colony variants exhibited a number of phenotypic differences, including cell morphology, surface motility, biofilm formation, antibiotic resistance, and virulence in a Galleria mellonella model. Additional clinical isolates exhibited a similar phase-variable control of colony opacity, suggesting that this may be a common feature of A. baumannii . IMPORTANCE A novel phase-variable mechanism has been identified in Acinetobacter baumannii that results in an interconversion between opaque and translucent colony phenotypes. This phase variation also coordinately regulates motility, cell shape, biofilm formation, antibiotic resistance, and virulence. The frequency of phase variation is increased at high cell density via a diffusible extracellular signal. To our knowledge, this report presents the first example of phase variation in A. baumannii and also the first example of quorum sensing-mediated control of phase variation in a bacterium. The findings are important, as this phase-variable mechanism can be identified only via changes in colony opacity using oblique light; therefore, many researchers studying A. baumannii may unknowingly be working with different colony variants.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3