Cell Lysis of Bacillus subtilis Caused by Intracellular Accumulation of Glucose-1-Phosphate

Author:

Prasad Chandan1,Freese Ernst1

Affiliation:

1. Laboratory of Molecular Biology, National Institute of Neurological Diseases and Stroke, Bethesda, Maryland 20014

Abstract

Mutants deficient in both glucose-6-phosphate dehydrogenase and phosphoglucose isomerase lysed 4 to 5 h after growth in nutrient medium containing glucose, or after prolonged incubation if the medium contained galactose. The lysis could be prevented by the addition of any other rapidly metabolizable carbon source such as fructose, glucosamine, or glycerol. The glucose-induced lysis was also abolished by introduction of a third mutation lacking phospho-glucose mutase activity but not by a third mutation lacking uridine diphosphate-glucose pyrophosphorylase or teichoic acid glucosyl transferase activity. Galactose-induced lysis was prevented only if the additional mutation abolished the uridine diphosphate-glucose pyrophosphorylase activity. The results showed that lysis was caused by the intracellular accumulation of glucose-1-phosphate, which in turn inhibited at least one of the two enzymes that convert glucosamine-6-phosphate to N -acetyl glucosamine-6-phosphate.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3