Author:
Macdonald Catriona A.,Clark Ian M.,Hirsch Penny R.,Zhao Fang-Jie,McGrath Steve P.
Abstract
ABSTRACTPrimers were designed to target 16S rRNA andnodDgenes ofRhizobium leguminosarumfrom DNA extracted from two different soil types contaminated with Zn applied in sewage sludge. Numbers of rhizobia estimated using 16S rRNA gene copy number showed higher abundance than those estimated by bothnodDand the most-probable-number (MPN) enumeration method using a plant trap host. Both 16S rRNA gene copies and the MPN rhizobia declined with increased levels of Zn contamination, as did the abundance of the functional genenodD, providing compelling evidence of a toxic effect of Zn onR. leguminosarumpopulations in the soil. Regression analysis suggested the total Zn concentration in soil as a better predictor of rhizobial numbers than both NH4NO3-extractable and soil solution Zn.R. leguminosarumbv. viciaenodDgene copies were generally less sensitive to Zn thanR. leguminosarumbv. trifoliinodD.The latter were generally below detection limits at Zn levels of >250 mg kg−1. Although there were differences in the actual numbers estimated by each approach, the response to Zn was broadly similar across all methods. These differences were likely to result from the fact that the molecular approaches assess the potential for nodulation while the MPN approach assesses actual nodulation. The results demonstrate that the use of targeted gene probes for assessing environmental perturbations of indigenous soil rhizobial populations may be more sensitive than the conventional plant bioassay and MPN methods.
Publisher
American Society for Microbiology
Subject
Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献