Mutations affecting hepadnavirus plus-strand DNA synthesis dissociate primer cleavage from translocation and reveal the origin of linear viral DNA

Author:

Staprans S1,Loeb D D1,Ganem D1

Affiliation:

1. Department of Microbiology and Immunology, University of California Medical Center, San Francisco 94143-0502.

Abstract

Hepadnaviruses replicate their circular DNA genomes via reverse transcription of an RNA intermediate. The initial product of reverse transcription, minus-strand DNA, contains two copies of a short direct repeat (DR) sequence, termed DR1 and DR2. Plus-strand DNA synthesis initiates at DR2 on minus-strand DNA, using as a primer a short, DR1-containing oligoribonucleotide derived by cleavage and translocation from the 5' end of pregenomic RNA. To clarify the sequence requirements for plus-strand primer cleavage and translocation, we have constructed mutants of the duck hepatitis B virus bearing base changes in or around the DR1 sequence in the primer. A point mutation at the terminal nucleotide of DR1 has a striking phenotype: normal levels of duplex viral DNA are produced, but nearly all of the DNA is linear rather than circular. Mapping of the 5' end of plus-strand DNA reveals that primer cleavage occurs with normal efficiency and accuracy, but the primer is not translocated to DR2; rather, it is extended in situ to generate duplex linear DNA. Other mutations just 3' to DR1 similarly affect primer translocation, although with differing efficiencies. Linear DNA found in wild-type virus preparations has the same fine structure as the mutant linears described above. These results indicate that (i) plus-strand primer cleavage and translocation are distinct steps that can be dissociated by mutation, (ii) lesions in sequences not included in the primer can severely inhibit primer translocation, and (iii) elongation of such untranslocated primers is responsible for the variable quantities of linear DNA that are found in all hepadnaviral stocks.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3