Efficient duck hepatitis B virus production by an avian liver tumor cell line

Author:

Condreay L D1,Aldrich C E1,Coates L1,Mason W S1,Wu T T1

Affiliation:

1. Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111.

Abstract

Duck hepatitis B virus (DHBV) is produced in small amounts following transfection of human hepatoma or hepatoblastoma cell lines with cloned viral DNA. In a search for better hosts for DHBV replication, two avian liver cell lines were investigated. One of these cell lines, LMH, produced 5 to 10 times more DNA replicative intermediates and 10 to 20 times more infectious DHBV than did either of the two human cell lines, HuH-7 and Hep G2. Utilization of cell lines in genetic analyses of virus replication is often dependent upon obtaining efficient complementation between cotransfected viral genomes. We assayed transcomplementation of a viral polymerase (pol) gene mutant, which is rather inefficient in transfected human cells, and found that viral DNA synthesis was at least 20 times more efficient following cotransfection of LMH cells than in similarly transfected HuH-7 cells. Recombination, a potential interpretation problem in complementation assays, occurred at low levels in the cotransfected cultures but was substantially reduced or eliminated by creation of an LMH subline stably expressing the viral polymerase. This cell line, pol-7, supported the replication of DHBV pol mutants at ca. 10 to 15% of the level of virus replication obtained following transfection with wild-type viral DNA. By transcomplementation of a pol gene mutant in LMH cells, we were able to produce sufficient virus with the mutant genome to investigate the role of polymerase in covalently closed circular DNA amplification. Our results substantiate the hypothesis that covalently closed circular DNA is synthesized by the viral reverse transcriptase.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 130 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3