Effects of Azithromycin and Rifampin on Chlamydia trachomatis Infection In Vitro

Author:

Dreses-Werringloer Ute1,Padubrin Ingrid1,Zeidler Henning1,Köhler Lars1

Affiliation:

1. Department of Internal Medicine, Division of Rheumatology, Medical School Hannover, Hannover, Germany

Abstract

ABSTRACT An in vitro cell culture model was used to investigate the long-term effects of azithromycin, rifampin, and the combination of azithromycin and rifampin on Chlamydia trachomatis infection. Although standard in vitro susceptibility testing indicated efficient inhibition by azithromycin, prolonged treatment did not reveal a clear elimination of chlamydia from host cells. Chlamydia were temporarily arrested in a persistent state, characterized by culture-negative, but viable, metabolically active chlamydia, as demonstrated by the presence of short-lived rRNA transcripts. Additionally, azithromycin induced generation of aberrant inclusions and an altered steady-state level of chlamydial antigens, with the predominance of Hsp60 protein compared to the level of the major outer membrane protein. Treatment with azithromycin finally resulted in suppression of rRNA synthesis. Chlamydial lipopolysaccharide and processed, functional rRNA were detectable throughout the entire incubation period. These in vitro data show a good correlation to those from some recent clinical investigations that have reported on the persistence of chlamydia, despite appropriate antibiotic treatment with azithromycin. Rifampin was highly active by in vitro susceptibility testing, but prolonged exposure to rifampin alone for up to 20 days resulted in the emergence of resistance. No development of resistance to rifampin was observed when chlamydia-infected cells were incubated with a combination of azithromycin and rifampin. This combination was shown to be more efficient than azithromycin alone, in that suppression of rRNA synthesis occurred earlier. Thus, such a combination may prove more useful than azithromycin alone.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3