Human Cytomegalovirus Induces the Endoplasmic Reticulum Chaperone BiP through Increased Transcription and Activation of Translation by Using the BiP Internal Ribosome Entry Site

Author:

Buchkovich Nicholas J.1,Yu Yongjun1,Pierciey Francis J.1,Alwine James C.1

Affiliation:

1. Department of Cancer Biology, Abramson Family Cancer Research Institute, Cell and Molecular Biology Graduate Group, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104

Abstract

ABSTRACT The endoplasmic reticulum (ER) chaperone BiP (immunoglobulin binding protein) plays a major role in the control of the unfolded protein response. We have previously shown that BiP levels are dramatically increased during human cytomegalovirus (HCMV) infection, where BiP performs unique roles in viral assembly and egress. We show that BiP mRNA levels increase during infection due to activation of the BiP promoter by the major immediate-early (MIE) proteins. The BiP promoter, like other ER stress-activated promoters, contains endoplasmic reticulum stress elements (ERSEs), which are activated by unfolded protein response (UPR)-induced transcription factors. However, these elements are not needed for MIE protein-mediated transcriptional activation; thus, a virus-specific transcriptional activation mechanism is used. Transcriptional activation results in only a 3- to 4-fold increase in BiP mRNA, suggesting that additional mechanisms for BiP production are utilized. The BiP mRNA contains an internal ribosome entry site (IRES) which increases the level of BiP mRNA translation. We show that utilization of the BiP IRES is dramatically increased in HCMV-infected cells. Utilization of the BiP IRES can be activated by the La autoantigen, also called Sjögren's syndrome antigen B (SSB). We show that SSB/La levels are significantly increased during HCMV infection, and SSB/La depletion causes the loss of BiP IRES utilization and lowers endogenous BiP levels in infected cells. Our data show that BiP levels increase in HCMV-infected cells through the combination of increased BiP gene transcription mediated by the MIE proteins and increased BiP mRNA translation due to SSB/La-induced utilization of the BiP IRES.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3