Disruption of Putative Regulatory Loci in Listeria monocytogenes Demonstrates a Significant Role for Fur and PerR in Virulence

Author:

Rea Rosemarie B.1,Gahan Cormac G. M.1,Hill Colin1

Affiliation:

1. Department of Microbiology, University College Cork, and Ireland Alimentary Pharmabiotic Centre, Cork, Ireland

Abstract

ABSTRACT The ability to adapt to adverse environmental conditions encountered in food and during host infection is a sine qua non for a successful Listeria monocytogenes infection. This ability is likely to depend on complex regulatory pathways controlled by a number of key regulators. We utilized the pORI19 plasmid integration system to analyze the role of six putative regulatory loci in growth under suboptimal environmental conditions and during murine infection. Disruption of loci encoding a topoisomerase III ( lmo2756 ), a putative methyltransferase ( lmo0581 ), and a regulator of the MarR family ( lmo1618 ) revealed roles for the methyltransferase and the MarR regulator in growth under environmental stress conditions. However, plasmid integration into these loci had no impact on virulence potential in the murine model of infection. Disruption of the alternative sigma factor Sigma-H resulted in a mutant that demonstrated reduced growth potential in minimal medium. Murine studies indicated a minor role for this sigma factor in the infectious process. Strikingly, disruption of both perR and fur loci resulted in mutants that are significantly affected in virulence for mice, with the fur mutant demonstrating the greatest reduction in virulence potential. Both perR and fur mutants demonstrated increased resistance to hydrogen peroxide and the fur mutant was sensitive to low-iron conditions. The virulence defect of both fur and perR mutants could be rescued by iron-overload after esculetin treatment of mice, suggesting that the in vivo role of these gene products is to procure iron for bacterial growth.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

Cited by 105 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3