Invasion of Melanoma Cells by Mycoplasma hyorhinis : Enhancement by Protease Treatment

Author:

Kornspan Jonathan D.1,Tarshis Mark1,Rottem Shlomo1

Affiliation:

1. Department of Membrane and Ultrastructure Research, The Hebrew University-Hadassah Medical School, Jerusalem, Israel

Abstract

ABSTRACT Mycoplasma hyorhinis (strain MCLD) was recently isolated from a melanoma cell culture. Growth of MCLD was considerably improved by 24 serial passages in a modified Hayflick's mycoplasma medium. Transmission electron microscopy showed that MCLD exhibits a polymorphic appearance, with ovoid or elongated cells frequently harboring an electron-dense core at one of the poles. Adherence of M. hyorhinis to melanoma cells followed saturation kinetics. Furthermore, although M. hyorhinis has been considered to remain attached to the surface of the host cells, we show for the first time, qualitatively by confocal laser scanning microscopy and quantitatively by a gentamicin resistance assay, that MCLD is able to invade melanoma cells. The ingested mycoplasmas were randomly distributed in the cytoplasm, tending to concentrate near the plasma membrane. Both adherence to and invasion of melanoma cells by M. hyorhinis strain MCLD were dramatically enhanced by mild proteolytic digestion with proteinase K (2.5 μg/mg cell protein for 2.5 min at 37°C) that affected the surface-exposed proteins of this organism, mainly the major 47-kDa lipoprotein. We suggest that the intracellular location of M. hyorhinis strain MCLD is a privileged niche, which may explain the survival of M. hyorhinis in tissue cultures. The enhanced binding to and invasion of melanoma cells by protease treatment may be due to either the activation or the enhanced exposure of an adhesin(s) on the mycoplasmal cell surface.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3