A multifunctional enolase mediates cytoadhesion and interaction with host plasminogen and fibronectin in Mycoplasma hyorhinis

Author:

Wang Jia,Yu Yanfei,Li Yao,Li Shiyang,Wang Li,Wei Yanna,Wu Yuzi,Pillay Bala,Olaniran Ademola Olufolahan,Chiliza Thamsanqa E.,Shao Guoqing,Feng Zhixin,Xiong QiyanORCID

Abstract

AbstractMycoplasma hyorhinis may cause systemic inflammation of pigs, typically polyserositis and arthritis, and is also associated with several types of human cancer. However, the pathogenesis of M. hyorhinis colonizing and breaching the respiratory barrier to establish systemic infection is poorly understood. Glycolytic enzymes are important moonlighting proteins and virulence-related factors in various bacteria. In this study, we investigated the functions of a glycolytic critical enzyme, enolase in the infection and systemic spread of M. hyorhinis. Bacterial surface localization of enolase was confirmed by flow cytometry and colony hybridization assay. Recombinant M. hyorhinis enolase (rEno) was found to adhere to pig kidney (PK-15) cells, and anti-rEno serum significantly decreased adherence. The enzyme was also found to bind host plasminogen and fibronectin, and interactions were specific and strong, with dissociation constant (KD) values of 1.4 nM and 14.3 nM, respectively, from surface plasmon resonance analysis. Activation of rEno-bound plasminogen was confirmed by its ability to hydrolyze plasmin-specific substrates and to degrade a reconstituted extracellular matrix. To explore key sites during these interactions, C-terminal lysine residues of enolase were replaced with leucine, and the resulting single-site and double-site mutants show significantly reduced interaction with plasminogen in far-Western blotting and surface plasmon resonance tests. The binding affinities of all mutants to fibronectin were reduced as well. Collectively, these results imply that enolase moonlights as an important adhesin of M. hyorhinis, and interacts with plasminogen and fibronectin. The two lysine residues in the C-terminus are important binding sites for its multiple binding activities.

Funder

National Natural Science Foundation of China

333 High-level Personnel Training Project of Jiangsu Province of China

Six Talent Peaks Project in Jiangsu Province

Jiangsu Agricultural Science and Technology Independent Innovation Fund

Publisher

Springer Science and Business Media LLC

Subject

General Veterinary

Reference54 articles.

1. Pieters M, Maes D (2019) Mycoplasmosis. In: Zimmermann JJ, Karriker LA, Ramirez A, Schwartz KJ, Stevenson GW, Zhang J (eds) Diseases of swine, 11th edn. Wiley, Hoboken, NJ, pp 863–883

2. Morita T, Ohiwa S, Shimada A, Kazama S, Yagihashi T, Umemura T (1999) Intranasally inoculated Mycoplasma hyorhinis causes eustachitis in pigs. Vet Pathol 36:174–178

3. Martinson B, Minion FC, Jordan D (2018) Development and optimization of a cell-associated challenge model for Mycoplasma hyorhinis in 7-week-old cesarean-derived, colostrum-deprived pigs. Can J Vet Res 82:12–23

4. Huang S, Li JY, Wu J, Meng L, Shou CC (2001) Mycoplasma infections and different human carcinomas. World J Gastroenterol 7:266–269

5. Vande Voorde J, Balzarini J, Liekens S (2014) Mycoplasmas and cancer: focus on nucleoside metabolism. EXCLI J 13:300–322

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3