Identification of 5′ and 3′ cis -Acting Elements of the Porcine Reproductive and Respiratory Syndrome Virus: Acquisition of Novel 5′ AU-Rich Sequences Restored Replication of a 5′-Proximal 7-Nucleotide Deletion Mutant

Author:

Choi Yu-Jeong1,Yun Sang-Im1,Kang Shien-Young2,Lee Young-Min1

Affiliation:

1. Department of Microbiology, College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Korea

2. Research Institute of Veterinary Medicine, College of Veterinary Medicine, Chungbuk National University, Cheongju, Korea

Abstract

ABSTRACT We here demonstrate the successful engineering of the RNA genome of porcine reproductive and respiratory syndrome virus (PRRSV) by using an infectious cDNA as a bacterial artificial chromosome. Runoff transcription from this cDNA by SP6 polymerase resulted in capped synthetic RNAs bearing authentic 5′ and 3′ ends of the viral genome that had specific infectivities of >5 × 10 5 PFU/μg of RNA. The synthetic viruses recovered from the transfected cells were genotypically and phenotypically indistinguishable from the parental virus. Using our system, a series of genomic RNAs with nucleotide deletions in their 5′ ends produced viruses with decreased or no infectivity. Various pseudorevertants were isolated, and acquisition of novel 5′ sequences of various sizes, composed predominantly of A and U bases, restored their infectivities, providing a novel insight into functional elements of the 5′ end of the PRRSV genome. In addition, our system was further engineered to generate a panel of self-replicating, self-limiting, luciferase-expressing PRRSV viral replicons bearing various deletions. Analysis of these replicons revealed the presence and location of a 3′ cis -acting element in the genome that was required for replication. Moreover, we produced enhanced green fluorescent protein-expressing infectious viruses, which indicates that the PRRSV cDNA/viral replicon/recombinant virus can be developed as a vector for the expression of a variety of heterologous genes. Thus, our PRRSV reverse genetics system not only offers a means of directly investigating the molecular mechanisms of PRRSV replication and pathogenesis but also can be used to generate new heterologous gene expression vectors and genetically defined antiviral vaccines.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3