Engineering of Cyclodextrin Glucanotransferase on the Cell Surface of Saccharomyces cerevisiae for Improved Cyclodextrin Production

Author:

Wang Zhankun1,Qi Qingsheng1,Wang Peng George1

Affiliation:

1. The State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, Shandong 250100, People's Republic of China

Abstract

ABSTRACT The cyclodextrin glucanotransferase (CGTase) gene ( cgt ) from Bacillus circulans 251 was cloned into plasmid pYD1, which allowed regulated expression, secretion, and detection. The expression of CGTase with a-agglutinin at the N-terminal end on the extracellular surface of Saccharomyces cerevisiae was confirmed by immunofluorescence microscopy. This surface-anchored CGTase gave the yeast the ability to directly utilize starch as a sole carbon source and the ability to produce the anticipated products, cyclodextrins, as well as glucose and maltose. The resulting glucose and maltose, which are efficient acceptors in the CGTase coupling reaction, could be consumed by yeast fermentation and thus facilitated cyclodextrin production. On the other hand, ethanol produced by the yeast may form a complex with cyclodextrin and shift the equilibrium in favor of cyclodextrin production. The yeast with immobilized CGTase produced 24.07 mg/ml cyclodextrins when it was incubated in yeast medium supplemented with 4% starch.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3