The tpl promoter of Citrobacter freundii is activated by the TyrR protein

Author:

Smith H Q1,Somerville R L1

Affiliation:

1. Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907, USA.

Abstract

The ability of microorganisms to degrade L-tyrosine to phenol, pyruvate, and ammonia is catalyzed by the inducible enzyme L-tyrosine phenol lyase (EC 4.1.99.2). To investigate possible mechanisms for how the synthesis of this enzyme is regulated, a variety of biochemical and genetic procedures was used to analyze transcription from the tpl promoter of Citrobacter freundii ATCC 29063 (C. braakii). By computer analysis of the region upstream of the tpl structural gene, two segments of DNA bearing strong homology to the known operator targets of the TyrR protein of Escherichia coli were detected. A DNA fragment of 509 bp carrying these operator targets plus the presumptive tpl promoter was synthesized by PCR and used to construct a single-copy tpl-lacZ reporter system. The formation of beta-galactosidase in strains carrying this reporter system, which was measured in E. coli strains of various genotypes, was strongly dependent on the presence of a functional TyrR protein. In strains bearing deletions of the tyrR gene, the formation of beta-galactosidase was reduced by a factor of 10. Several mutationally altered forms of TyrR were deficient in their abilities to activate the tpl promoter. The pattern of loss of activation function was exactly parallel to the effects of the same tyrR mutations on the mtr promoter, which is known to be activated by the TyrR protein. When cells carrying the tpl-lacZ reporter system were grown on glycerol, the levels of beta-galactosidase were 10- to 20-fold higher than those observed in glucose-grown cells. The effect was the same whether or not TyrR-mediated stimulation of the tpl promoter was in effect. By deleting the cya gene, it was shown that the glycerol effect was attributable to stimulation of the tpl promoter by the cyclic AMP (cAMP)-cAMP reporter protein system. A presumptive binding site for this transcription factor was detected just upstream of the -35 recognition hexamer of the tpl promoter. The transcriptional start point of the tpl promoter was determined by chemical procedures. The precise locations of the TyrR binding sites, which were established by DNase I footprinting, agreed with the computer-predicted positions of these regulatory sites. The two TyrR operators, which were centered at coordinates -272.5 and -158.5 with respect to the transcriptional start point, were independently disabled by site-directed mutagenesis. When the upstream operator was altered, activation was completely abolished. When the downstream operator was altered, there was a fourfold reduction in reporter enzyme levels. The tpl system presents a number of intriguing features not previously encountered in TyrR-activated promoters. First among these is the question of how the TyrR protein, bound to widely separated operators, activates the tpl promoter which is also widely separated from the operators.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Reference45 articles.

1. Importance of the position of TyrR boxes for repression and activation of the tyrP and aroF gene in Escherichia coli;Andrews A. E.;J. Bacteriol.,1991

2. Mutational analysis of repression and activation of the tyrP gene in Escherichia coli;Andrews A. E.;J. Bacteriol.,1991

3. Three-dimensional structure of tyrosine phenol-lyase;Antson A. A.;Biochemistry,1993

4. Activation of a cryptic pathway for threonine metabolism via specific IS3-mediated alteration of promoter structure in Escherichia coli;Aronson B. D.;J. Bacteriol.,1989

5. Bai Q. and R. L. Somerville. Cloning and characterization of the tyrR genes of Citrobacter braakii and Salmonella typhimurium. Unpublished data.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3