A two-component system in Ralstonia (Pseudomonas) solanacearum modulates production of PhcA-regulated virulence factors in response to 3-hydroxypalmitic acid methyl ester

Author:

Clough S J1,Lee K E1,Schell M A1,Denny T P1

Affiliation:

1. Department of Plant Pathology, University of Georgia, Athens 30602, USA.

Abstract

Expression of virulence factors in Ralstonia solanacearum is controlled by a complex regulatory network, at the center of which is PhcA, a LysR family transcriptional regulator. We report here that expression of phcA and production of PhcA-regulated virulence factors are affected by products of the putative operon phcBSR(Q). phcB is required for production of an extracellular factor (EF), tentatively identified as the fatty acid derivative 3-hydroxypalmitic acid methyl ester (3-OH PAME), but a biochemical function for PhcB could not be deduced from DNA sequence analysis. The other genes in the putative operon are predicted to encode proteins homologous to members of two-component signal transduction systems: PhcS has amino acid similarity to histidine kinase sensors, whereas PhcR and OrfQ are similar to response regulators. PhcR is quite unusual because its putative output domain strongly resembles the histidine kinase domain of a sensor protein. Production of the PhcA-regulated factors exopolysaccharide I, endoglucanase, and pectin methyl esterase was reduced 10- to 100-fold only in mutants with a nonpolar insertion in phcB [which express phcSR(Q) in the absence of the EF]; simultaneously, expression of phcA was reduced fivefold. Both a wild-type phenotype and phcA expression were restored by addition of 3-OH PAME to growing cultures. Mutants with polar insertions in phcB or lacking the entire phcBSR(Q) region produced wild-type levels of PhcA-regulated virulence factors. The genetic data suggest that PhcS and PhcR function together to regulate expression of phcA, but the biochemical mechanism for this is unclear. At low levels of the EF, it is likely that PhcS phosphorylates PhcR, and then PhcR interacts either with PhcA (which is required for full expression of phcA) or an unknown component of the signal cascade to inhibit expression of phcA. When the EF reaches a threshold concentration, we suggest that it reduces the ability of PhcS to phosphorylate PhcR, resulting in increased expression of phcA and production of PhcA-regulated factors.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Reference50 articles.

1. Induction of a growth-phase-dependent promoter triggers transcription of bolA, an Escherichia coli morphogene;Aldea M.;EMBO J.,1989

2. Basic local alignment search tool;Altschul S. F.;J. Mol. Biol.,1990

3. A rapid alkaline extraction method for the isolation of plasmid DNA;Birnboim H. C.;Methods Enzymol.,1983

4. A complementation analysis of the restriction and modification of DNA in Escherichia coli;Boyer H. W.;J. Mol. Biol.,1969

5. Phenotype conversion in Pseudomonas solanacearum due to spontaneous inactivation of PhcA, a putative LysR transcriptional regulator;Brumbley S. M.;J. Bacteriol.,1993

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3