PhcX Is a LqsR-family response regulator that contributes to Ralstonia solanacearum virulence and regulates multiple virulence factors

Author:

Liu Qingmei1ORCID,Li Chuhao1,Zhang Xiaohan1,Ding Mengfan1,Liao Xinyue1,Yan Jinli2,Hu Ming1,Yang Leilei1,Wang Xiaoqing1,Liao Lisheng1,Li Peng3ORCID,Zhou Xiaofan1ORCID

Affiliation:

1. Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University , Guangzhou, China

2. School of Agricultural Science, Xichang University , Xichang, China

3. Ministry of Education Key Laboratory for Ecology of Tropical Islands, Hainan Provincial Key Laboratory for Tropical Plant and Animal Ecology, College of Life Sciences, Hainan Normal University , Haikou, China

Abstract

ABSTRACT As one of the most notorious and successful phytopathogenic bacteria, Ralstonia solanacearum controls the transition between long-term survival and pathogenic modes through an intricate regulatory network, the understanding of which remains incomplete despite years of effort. In this study, we identified PhcX, a previously uncharacterized response regulator in R. solanacearum , and uncovered its essential functions in modulating virulence and metabolism. The phcX deletion mutant exhibited substantial phenotypic alterations, including slower initial growth, altered response to host extract, reduced motilities, polygalacturonase activity, and exopolysaccharide production, elevated biofilm formation, delayed hypersensitive response, and impaired virulence. Moreover, ~16% of all genes were differentially expressed in the mutant, among which the genes associated with virulence, nitrogen metabolism, and regulation were overrepresented (e.g., most T3SS/T3Es genes). Many of these traits and genes were regulated by PhcX and the global virulence regulator PhcA, but 81.4% of the genes were regulated in opposite directions. The functions of PhcX were largely conserved in R. solanacearum EP1 and GMI1000 strains. Apparent orthologs of PhcX are widely distributed in Proteobacteria, including the LqsR quorum sensing (QS) response regulator in Legionella pneumophilia . Notably, our data suggest that phcX was originally part of the Lqs QS system but was decoupled from Lqs in Ralstonia / Cupriavidus , physically linked to the phc QS genes, and connected with the virulence regulatory network in Ralstonia during its evolution. The findings of this study contribute to a better understanding of the virulence and metabolism regulation mechanisms in R. solanacearum and shed light on the evolution of its complex regulatory network. IMPORTANCE The bacterial wilt caused by the soil-borne phytopathogen Ralstonia solanacearum is one of the most destructive crop diseases. To achieve a successful infection, R. solanacearum has evolved an intricate regulatory network to orchestrate the expression of an arsenal of virulence factors and fine-tune the allocation of energy. However, despite the wealth of knowledge gained in the past decades, many players and connections are still missing from the network. The importance of our study lies in the identification of PhcX, a novel conserved global regulator with critical roles in modulating the virulence and metabolism of R. solanacearum . PhcX affects many well-characterized regulators and exhibits contrasting modes of regulation from the central regulator PhcA on a variety of virulence-associated traits and genes. Our findings add a valuable piece to the puzzle of how the pathogen regulates its proliferation and infection, which is critical for understanding its pathogenesis and developing disease control strategies.

Funder

GDSTC | Basic and Applied Basic Research Foundation of Guangdong Province

MOST | National Natural Science Foundation of China

Publisher

American Society for Microbiology

Subject

Virology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3