Submerged Conidiation and Product Formation by Aspergillus niger at Low Specific Growth Rates Are Affected in Aerial Developmental Mutants

Author:

Jørgensen Thomas R.,Nielsen Kristian F.,Arentshorst Mark,Park JooHae,van den Hondel Cees A.,Frisvad Jens C.,Ram Arthur F.

Abstract

ABSTRACTExposure to an aerial environment or severe nutrient limitation induces asexual differentiation in filamentous fungi. Submerged cultivation ofAspergillus nigerin carbon- and energy-limited retentostat cultures both induces and fuels conidiation. Physiological and transcriptomic analyses have revealed that this differentiation strongly affects product formation. Since conidiation is inherent in the aerial environment, we hypothesized that product formation near zero growth can be influenced by affecting differentiation or development of aerial hyphae in general. To investigate this idea, three developmental mutants (ΔfwnA,scl-1, andscl-2mutants) that have no apparent vegetative growth defects were cultured in maltose-limited retentostat cultures. The secondary-metabolite profile of the wild-type strain defined flavasperone, aurasperone B, tensidol B, and two so far uncharacterized compounds as associated with conidium formation, while fumonisins B2, B4, and B6were characteristic of early response to nutrient limitation by the vegetative mycelium. The developmental mutants responded differently to the severe substrate limitation, which resulted in distinct profiles of growth and product formation.fwnAencodes the polyketide synthase responsible for melanin biosynthesis during aerial differentiation, and we show that conidial melanin synthesis in submerged retentostat cultures and aurasperone B production arefwnAdependent. Thescl-1andscl-2strains are two UV mutants generated in the ΔfwnAbackground that displayed reduced asexual conidiation and formed sclerotium-like structures on agar plates. The reduced conidiation phenotypes of thescl-1andscl-2strains are reflected in the retentostat cultivation and are accompanied by elimination or severely reduced accumulation of secondary metabolites and distinctly enhanced accumulation of extracellular protein. This investigation shows that submerged conidiation and product formation of a mitosporic fungus cultured at low specific growth rates can be fundamentally affected by interfering with the genetic program for differentiation of aerial hyphae, opening new perspectives for tailoring industrial performance.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3