Proteomics Analysis Reveals Previously Uncharacterized Virulence Factors in Vibrio proteolyticus

Author:

Ray Ann12,Kinch Lisa N.2,de Souza Santos Marcela1,Grishin Nick V.234,Orth Kim123ORCID,Salomon Dor1ORCID

Affiliation:

1. Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA

2. Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA

3. Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, USA

4. Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas, USA

Abstract

ABSTRACT Members of the genus Vibrio include many pathogens of humans and marine animals that share genetic information via horizontal gene transfer. Hence, the Vibrio pan-genome carries the potential to establish new pathogenic strains by sharing virulence determinants, many of which have yet to be characterized. Here, we investigated the virulence properties of Vibrio proteolyticus , a Gram-negative marine bacterium previously identified as part of the Vibrio consortium isolated from diseased corals. We found that V. proteolyticus causes actin cytoskeleton rearrangements followed by cell lysis in HeLa cells in a contact-independent manner. In search of the responsible virulence factor involved, we determined the V. proteolyticus secretome. This proteomics approach revealed various putative virulence factors, including active type VI secretion systems and effectors with virulence toxin domains; however, these type VI secretion systems were not responsible for the observed cytotoxic effects. Further examination of the V. proteolyticus secretome led us to hypothesize and subsequently demonstrate that a secreted hemolysin, belonging to a previously uncharacterized clan of the leukocidin superfamily, was the toxin responsible for the V. proteolyticus -mediated cytotoxicity in both HeLa cells and macrophages. Clearly, there remains an armory of yet-to-be-discovered virulence factors in the Vibrio pan-genome that will undoubtedly provide a wealth of knowledge on how a pathogen can manipulate host cells. IMPORTANCE The pan-genome of the genus Vibrio is a potential reservoir of unidentified toxins that can provide insight into how members of this genus have successfully risen as emerging pathogens worldwide. We focused on Vibrio proteolyticus , a marine bacterium that was previously implicated in virulence toward marine animals, and characterized its interaction with eukaryotic cells. We found that this bacterium causes actin cytoskeleton rearrangements and leads to cell death. Using a proteomics approach, we identified a previously unstudied member of the leukocidin family of pore-forming toxins as the virulence factor responsible for the observed cytotoxicity in eukaryotic cells, as well as a plethora of additional putative virulence factors secreted by this bacterium. Our findings reveal a functional new clan of the leukocidin toxin superfamily and establish this pathogen as a reservoir of potential toxins that can be used for biomedical applications.

Funder

HHS | NIH | National Institute of Allergy and Infectious Diseases

HHS | NIH | National Institute of General Medical Sciences

Welch Foundation

Once Upon A Time Foundation

Publisher

American Society for Microbiology

Subject

Virology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3