Affiliation:
1. Department of Biology, University of Washington, Seattle, Washington, USA
2. Department of Experimental Plant Biology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
3. Institutes of Veterinary Anatomy and Virology, University of Zurich, Zürich, Switzerland
4. Institute of Parasitology, University of Zurich, Zürich, Switzerland
Abstract
ABSTRACT
Encystation of the common intestinal parasite
Giardia lamblia
involves the production, trafficking, and secretion of cyst wall material (CWM). However, the molecular mechanism responsible for the regulation of these sequential processes remains elusive. Here, we examined the role of GlRac,
Giardia
’s sole Rho family GTPase, in the regulation of endomembrane organization and cyst wall protein (CWP) trafficking. Localization studies indicated that GlRac is associated with the endoplasmic reticulum (ER) and the Golgi apparatus-like encystation-specific vesicles (ESVs). Constitutive GlRac signaling increased levels of the ER marker PDI2, induced ER swelling, reduced overall CWP1 production, and promoted the early maturation of ESVs. Quantitative analysis of cells expressing constitutively active hemagglutinin (HA)-tagged GlRac (HA-Rac
CA
) revealed fewer but larger ESVs than control cells. Consistent with the phenotype of premature maturation of ESVs in HA-Rac
CA
-expressing cells, constitutive GlRac signaling resulted in increased CWP1 secretion and, conversely, morpholino depletion of GlRac blocked CWP1 secretion. Wild-type cells unexpectedly secreted large quantities of CWP1 into the medium, and free CWP1 was used cooperatively during cyst formation. These results, in part, could account for the previously reported observation that
G. lamblia
encysts more efficiently at high cell densities. These studies of GlRac show that it regulates encystation at several levels, and our findings support its coordinating role as a regulator of CWP trafficking and secretion. The central role of GlRac in regulating membrane trafficking and the cytoskeleton, both of which are essential to
Giardia
parasitism, further suggests its potential as a novel target for drug development to treat giardiasis.
IMPORTANCE
The encystation process is crucial for the transmission of giardiasis and the life cycle of many protists. Encystation for
Giardia lamblia
involves the assembly of a protective cyst wall via sequential production, trafficking, and secretion of cyst wall material. However, the regulatory pathways that coordinate cargo maturation and secretion remain unknown. Here, we asked whether the signaling activities of
G. lamblia
’s single Rho family GTPase, GlRac, might have a regulatory role in the encystation process. We show that GlRac localizes to endomembranes and its signaling activities regulate the production of cyst wall protein 1 (CWP1), the maturation of encystation-specific vesicles (ESVs), and secretion of CWP1. We also show that secreted CWP1 is available for the development of cysts at the population level, a finding that in part could explain why
Giardia
encystation proceeds more efficiently at high cell densities.
Funder
HHS | NIH | National Institute of Allergy and Infectious Diseases
Publisher
American Society for Microbiology
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献