Affiliation:
1. Department of Microbiology and Immunology, University of British Columbia, 300-6174 University Boulevard, Vancouver, British Columbia V6T 1Z3, Canada
Abstract
ABSTRACT
Arctic tundra and boreal forest soils have globally relevant functions that affect atmospheric chemistry and climate, yet the bacterial composition and diversity of these soils have received little study. Serial analysis of ribosomal sequence tags (SARST) and denaturing gradient gel electrophoresis (DGGE) were used to compare composite soil samples taken from boreal and arctic biomes. This study comprises an extensive comparison of geographically distant soil bacterial communities, involving the analysis of 12,850 ribosomal sequence tags from six composite soil samples. Bacterial diversity estimates were greater for undisturbed arctic tundra soil samples than for boreal forest soil samples, with the highest diversity associated with a sample from an extreme northern location (82
o
N). The lowest diversity estimate was obtained from an arctic soil sample that was disturbed by compaction and sampled from a greater depth. Since samples from the two biomes did not form distinct clusters on the basis of SARST data and DGGE fingerprints, factors other than latitude likely influenced the phylogenetic compositions of these communities. The high number of ribosomal sequences analyzed enabled the identification of possible cosmopolitan and endemic bacterial distributions in particular soils.
Publisher
American Society for Microbiology
Subject
Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology
Cited by
148 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献