Molecular microbial diversity of an agricultural soil in Wisconsin

Author:

Borneman J1,Skroch P W1,O'Sullivan K M1,Palus J A1,Rumjanek N G1,Jansen J L1,Nienhuis J1,Triplett E W1

Affiliation:

1. Department of Agronomy, University of Wisconsin-Madison 53706, USA.

Abstract

A culture-independent survey of the soil microbial diversity in a clover-grass pasture in southern Wisconsin was conducted by sequence analysis of a universal clone library of genes coding for small-subunit rRNA (rDNA). A rapid and efficient method for extraction of DNA from soils which resulted in highly purified DNA with minimal shearing was developed. Universal small-subunit-rRNA primers were used to amplify DNA extracted from the pasture soil. The PCR products were cloned into pGEM-T, and either hypervariable or conserved regions were sequenced. The relationships of 124 sequences to those of cultured organisms of known phylogeny were determined. Of the 124 clones sequenced, 98.4% were from the domain Bacteria. Two of the rDNA sequences were derived from eukaryotic organelles. Two of the 124 sequences were of nuclear origin, one being fungal and the other a plant sequence. No sequences of the domain Archaea were found. Within the domain, Bacteria, three kingdoms were highly represented: the Proteobacteria (16.1%), the Cytophaga-Flexibacter-Bacteroides group (21.8%), and the low G+C-content gram-positive group (21.8%). Some kingdoms, such as the Thermotogales, the green nonsulfur group, Fusobacteria, and the Spirochaetes, were absent. A large number of the sequences (39.4%) were distributed among several clades that are not among the major taxa described by Olsen et al. (G.J. Olsen, C.R. Woese, and R. Overbeek, J. Bacteriol., 176:1-6, 1994). From the alignments of the sequence data, distance matrices were calculated to display the enormous microbial diversity found in this soil in two ways, as phylogenetic trees and as multidimensional-scaling plots.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Reference55 articles.

1. Alexander M. 1977. Introduction to soil microbiology p. 472. John Wiley & Sons New York.

2. Phylogenetic identification and in situ detection of individual microbial cells without cultivation;Amann R. I.;Microbiol. Rev.,1995

3. Diversity of microbial communities;Atlas R. M.;Adv. Microb. Ecol.,1984

4. Response of microbial populations to environmental disturbance;Atlas R. M.;Microb. Ecol.,1991

5. Remarkable archaeal diversity detected in a Yellowstone National Park hot spring environment;Barns S. M.;Proc. Natl. Acad. Sci. USA,1994

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3