Affiliation:
1. Beatson Institute for Cancer Research, Switchback Road, Glasgow G61 1BD, United Kingdom
Abstract
ABSTRACT
While wild-type p53 is normally a rapidly degraded protein, mutant forms of p53 are stabilized and accumulate to high levels in tumor cells. In this study, we show that mutant and wild-type p53 proteins are ubiquitinated and degraded through overlapping but distinct pathways. While Mdm2 can drive the degradation of both mutant and wild-type p53, our data suggest that the ability of Mdm2 to function as a ubiquitin ligase is less important in the degradation of mutant p53, which is heavily ubiquitinated in an Mdm2-independent manner. Our initial attempts to identify ubiquitin ligases that are responsible for the ubiquitination of mutant p53 have suggested a role for the chaperone-associated ubiquitin ligase CHIP (C terminus of Hsc70-interacting protein), although other unidentified ubiquitin ligases also appear to contribute. The contribution of Mdm2 to the degradation of mutant p53 may reflect the ability of Mdm2 to deliver the ubiquitinated mutant p53 to the proteasome.
Publisher
American Society for Microbiology
Subject
Cell Biology,Molecular Biology
Cited by
185 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献