Ubiquitination and Degradation of Mutant p53

Author:

Lukashchuk Natalia1,Vousden Karen H.1

Affiliation:

1. Beatson Institute for Cancer Research, Switchback Road, Glasgow G61 1BD, United Kingdom

Abstract

ABSTRACT While wild-type p53 is normally a rapidly degraded protein, mutant forms of p53 are stabilized and accumulate to high levels in tumor cells. In this study, we show that mutant and wild-type p53 proteins are ubiquitinated and degraded through overlapping but distinct pathways. While Mdm2 can drive the degradation of both mutant and wild-type p53, our data suggest that the ability of Mdm2 to function as a ubiquitin ligase is less important in the degradation of mutant p53, which is heavily ubiquitinated in an Mdm2-independent manner. Our initial attempts to identify ubiquitin ligases that are responsible for the ubiquitination of mutant p53 have suggested a role for the chaperone-associated ubiquitin ligase CHIP (C terminus of Hsc70-interacting protein), although other unidentified ubiquitin ligases also appear to contribute. The contribution of Mdm2 to the degradation of mutant p53 may reflect the ability of Mdm2 to deliver the ubiquitinated mutant p53 to the proteasome.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3