Cell Wall Perturbation Sensitizes Fungi to the Antimalarial Drug Chloroquine

Author:

Islahudin Farida12,Khozoie Combiz1,Bates Steven3,Ting Kang-Nee4,Pleass Richard J.5,Avery Simon V.1

Affiliation:

1. School of Biology, University of Nottingham, Nottingham, United Kingdom

2. School of Pharmacy, University of Nottingham Malaysia Campus, Semenyih, Malaysia

3. University of Exeter, College of Life & Environmental Sciences, Exeter, United Kingdom

4. School of Biomedical Sciences, University of Nottingham Malaysia Campus, Semenyih, Malaysia

5. University of Liverpool, Liverpool School of Tropical Medicine, Liverpool, United Kingdom

Abstract

ABSTRACT Chloroquine (CQ) has been a mainstay of antimalarial drug treatment for several decades. Additional therapeutic actions of CQ have been described, including some reports of fungal inhibition. Here we investigated the action of CQ in fungi, including the yeast model Saccharomyces cerevisiae . A genomewide yeast deletion strain collection was screened against CQ, revealing that bck1 Δ and slt2 Δ mutants of the cell wall integrity pathway are CQ hypersensitive. This phenotype was rescued with sorbitol, consistent with cell wall involvement. The cell wall-targeting agent caffeine caused hypersensitivity to CQ, as did cell wall perturbation by sonication. The phenotypes were not caused by CQ-induced changes to cell wall components. Instead, CQ accumulated to higher levels in cells with perturbed cell walls: CQ uptake was 2- to 3-fold greater in bck1 Δ and slt2 Δ mutants than in wild-type yeast. CQ toxicity was synergistic with that of the major cell wall-targeting antifungal drug, caspofungin. The MIC of caspofungin against the yeast pathogen Candida albicans was decreased 2-fold by 250 μM CQ and up to 8-fold at higher CQ concentrations. Similar effects were seen in Candida glabrata and Aspergillus fumigatus . The results show that the cell wall is critical for CQ resistance in fungi and suggest that combination treatments with cell wall-targeting drugs could have potential for antifungal treatment.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3