High-Level Azithromycin Resistance Occurs in Neisseria gonorrhoeae as a Result of a Single Point Mutation in the 23S rRNA Genes

Author:

Chisholm Stephanie A.1,Dave Jayshree2,Ison Catherine A.1

Affiliation:

1. Sexually Transmitted Bacteria Reference Laboratory, Centre for Infections, Health Protection Agency, 61 Colindale Avenue, Colindale, London NW9 5HT

2. Scottish Bacterial Sexually Transmitted Infections Reference Laboratory, Royal Infirmary of Edinburgh, Edinburgh, United Kingdom

Abstract

ABSTRACT High-level azithromycin resistance (AZM-HR), defined as a MIC of ≥256 mg/liter, emerged in Neisseria gonorrhoeae in the United Kingdom in 2004. To determine the mechanism of this novel phenotype, isolates from the United Kingdom that were AZM-HR ( n , 19), moderately AZM resistant (MICs, 2 to 8 mg/liter) ( n , 26), or sensitive (MICs, 0.12 to 0.25 mg/liter) ( n , 4) were screened for methylase ( erm ) genes and for mutations in the mtrR promoter region, associated with efflux pump upregulation. All AZM-resistant isolates and 12 sensitive isolates were screened for mutations in domain V of each 23S rRNA allele. All AZM-HR isolates contained the A2059G mutation ( Escherichia coli numbering) in three (3 isolates) or four (16 isolates) 23S rRNA alleles. Most (22/26) moderately AZM resistant isolates contained the C2611T mutation in at least 3/4 alleles. The remainder contained four wild-type alleles, as did 8/12 sensitive isolates, while one allele was mutated in the remaining four sensitive isolates. Serial passage of AZM-sensitive colonies on an erythromycin-containing medium selected AZM-HR if the parent strain already contained mutation A2059G in one 23S rRNA allele. The resultant AZM-HR strains contained four mutated alleles. Eight isolates (five moderately AZM resistant and three AZM-HR) contained mutations in the mtrR promoter. No methylase genes were detected. This is the first evidence that AZM-HR in gonococci may result from a single point mutation (A2059G) in the peptidyltransferase loop in domain V of the 23S rRNA gene. Mutation of a single allele is insufficient to confer AZM-HR, but AZM-HR can develop under selection pressure. The description of a novel resistance mechanism will aid in screening for the AZM-HR phenotype.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3