Inhibition of adhesion of S-fimbriated Escherichia coli to buccal epithelial cells by human milk fat globule membrane components: a novel aspect of the protective function of mucins in the nonimmunoglobulin fraction

Author:

Schroten H1,Hanisch F G1,Plogmann R1,Hacker J1,Uhlenbruck G1,Nobis-Bosch R1,Wahn V1

Affiliation:

1. University Children's Hospital Düsseldorf, Germany.

Abstract

We investigated the presence of factors in human milk that inhibit invasion of pathogenic bacteria. The effect of human milk fat globule membrane (HMFGM) components on adhesion of cloned S-fimbriated Escherichia coli to human buccal epithelial cells was analyzed. S fimbriae are a common feature of E. coli strains causing sepsis and meningitis in newborns and are bound to epithelia via sialyl-(alpha-2-3)galactoside structures. Human milk fat globules (HMFG) could be agglutinated by the above-mentioned bacteria. Agglutination could be inhibited by fetuin, human glycophorin, and alpha 1-acid glycoprotein. In addition, pretreatment of HMFG with Vibrio cholerae neuraminidase markedly reduced bacterium-induced agglutinations, indicating the involvement of neuraminic acid-containing glycoproteins. In contrast, lipid droplets of infant formula or artificial lipid emulsions (Intralipid) could not be agglutinated. HMFG were present in stools of breast-fed neonates as shown by indirect immunofluorescence staining with a monoclonal antibody directed against carbohydrate residues present on HMFGM. These HMFG could be agglutinated by bacteria. HMFG inhibited E. coli adhesion to buccal epithelial cells. To further characterize relevant E. coli binding structures, HMFGM components were separated by gel chromatography. The mucin fraction showed the most pronounced inhibitory effect on adhesion of S-fimbriated E. coli to human buccal epithelial cells. Our data suggest that HMFG inhibit bacterial adhesion in the entire intestine and thereby may provide protection against bacterial infection.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3