Affiliation:
1. Department of Infectious, Parasitic and Immune-Mediated Diseases
2. Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
Abstract
ABSTRACT
The pathogenesis of nontypeable
Haemophilus influenzae
(NTHi) begins with adhesion to the rhinopharyngeal mucosa. In almost 80% of NTHi clinical isolates, the HMW proteins are the major adhesins. The prototype HMW1 and HMW2 proteins, identified in NTHi strain 12, exhibit different binding specificities. The two binding domains have been localized in regions of maximal sequence dissimilarity (40% identity, 58% similarity). Two areas within these binding domains have been found essential for full level adhesive activity (designated the core-binding domains). To investigate the conservation and diversity of the HMW1 and HMW2 core-binding domains among isolates, PCR and DNA sequencing were used. First, we separately amplified the
hmw1A
-like and
hmw2A
-like structural genes in nine invasive NTHi isolates, discovering two new
hmwA
alleles, whose sequences are herein reported. Then, the
hmw1A-
like and
hmw2A
-like PCR products were used as the template in nested PCR to produce amplicons encompassing the encoding sequences of the two core-binding domains. In-depth sequence analysis was then performed among sequences of each group, with the support of specific computer programs. Overall, extensive sequence diversity among isolates was highlighted. However, similarity plots showed patterns consisting of peaks of relatively high similarity alternating with strongly divergent regions. The phylogenetic tree clearly indicated the HMW1-like and HMW2-like core-binding domain sequences as two clusters. Distinct sets of conserved amino acid motifs were identified within each group of sequences using the MEME/MOTIFSEARCH tool. Since HMW adhesins could represent candidates for future vaccines, identification of specific patterns of conserved motifs in otherwise highly variable regions is of great interest.
Publisher
American Society for Microbiology
Subject
Infectious Diseases,Immunology,Microbiology,Parasitology
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献