Functional characterization and transcriptional analysis of the dnrR1 locus, which controls daunorubicin biosynthesis in Streptomyces peucetius

Author:

Madduri K1,Hutchinson C R1

Affiliation:

1. School of Pharmacy, University of Wisconsin, Madison 53706.

Abstract

We previously proposed that the adjacent dnrIJ genes represent a two-component regulatory system controlling daunorubicin biosynthesis in Streptomyces peucetius on the basis of the homology of the DnrI and DnrJ proteins to other response regulator proteins and the effect of a dnrI::aphII mutation. In the present paper we report the results of work with the dnrI::aphII mutant in complementation, bioconversion, and transcriptional analysis experiments to understand the function of dnrI. For five putative operons in the sequenced portion of the S. peucetius daunorubicin biosynthesis gene cluster examined, all of the potential transcripts are present in the delta dnrJ mutant and wild-type strains but absent in the dnrI::aphII strain. Since these transcripts code for both early- and late-acting enzymes in daunorubicin biosynthesis, dnrI seems to control all of the daunorubicin biosynthesis genes directly or indirectly. Transcriptional mapping of the 5' and 3' ends of the dnrIJ transcript and the termination site of the convergently transcribed dnrZUV transcript reveals, interestingly, that the two transcripts share extensive complementarity in the regions coding for daunorubicin biosynthesis enzymes. In addition, dnrI may regulate the expression of the drrAB and drrC daunorubicin resistance genes. The delta dnrJ mutant accumulates epsilon-rhodomycinone, the aglycone precursor of daunorubicin. Since this mutant contains transcripts coding for several early- and late-acting enzymes and since dnr mutants blocked in deoxysugar biosynthesis accumulate epsilon-rhodomycinone, we conclude that dnrJ is a daunosamine biosynthesis gene. Moreover, newly available gene sequence data show that the DnrJ protein resembles a group of putative aminotransferase enzymes, suggesting that the role of DnrJ is to add an amino group to an intermediate of daunosamine biosynthesis.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 81 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3