Silencing Essential Protein Secretion in Mycobacterium smegmatis by Using Tetracycline Repressors

Author:

Guo Xinzheng V.12,Monteleone Mercedes1,Klotzsche Marcus1,Kamionka Annette3,Hillen Wolfgang3,Braunstein Miriam4,Ehrt Sabine12,Schnappinger Dirk15

Affiliation:

1. Department of Microbiology and Immunology, Weill Cornell Medical College, 1300 York Avenue, New York, New York 10021

2. Program in Immunology and Microbial Pathogenesis

3. Lehrstuhl für Mikrobiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, D-91058 Erlangen, Germany

4. Department of Microbiology and Immunology, University of North Carolina, Rm. 804, Mary Ellen Jones Building, Chapel Hill, North Carolina 27599

5. Program in Molecular Biology, Weill Graduate School of Medical Sciences of Cornell University, 445 East 69th Street, New York, New York 10021

Abstract

ABSTRACT Many processes that are essential for mycobacterial growth are poorly understood. To facilitate genetic analyses of such processes in mycobacteria, we and others have developed regulated expression systems that are repressed by a tetracycline repressor (TetR) and induced with tetracyclines, permitting the construction of conditional mutants of essential genes. A disadvantage of these systems is that tetracyclines function as transcriptional inducers and have to be removed to initiate gene silencing. Recently, reverse TetR mutants were identified that require tetracyclines as corepressors. Here, we report that one of these mutants, TetR r1.7, allows efficient repression of lacZ expression in Mycobacterium smegmatis in the presence but not the absence of anhydrotetracycline (atc). TetR and TetR r1.7 also allowed efficient silencing of the essential secA1 gene, as demonstrated by inhibition of the growth of a conditional mutant and dose-dependent depletion of the SecA1 protein after the removal or addition, respectively, of atc. The kinetics of SecA1 depletion were similar with TetR and TetR r1.7. To test whether silencing of secA1 could help identify substrates of the general secretion pathway, we analyzed the main porin of M. smegmatis , MspA. This showed that the amount of cell envelope-associated MspA decreased more than 90-fold after secA1 silencing. We thus demonstrated that TetR r1.7 allows the construction of conditional mycobacterial mutants in which the expression of an essential gene can be efficiently silenced by the addition of atc and that gene silencing permits the identification of candidate substrates of mycobacterial secretion systems.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3