Two Nonredundant SecA Homologues Function in Mycobacteria

Author:

Braunstein Miriam12,Brown Amanda M.1,Kurtz Sherry2,Jacobs William R.1

Affiliation:

1. Howard Hughes Medical Institute, Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York 10461,1 and

2. Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina 27599-72902

Abstract

ABSTRACT The proper extracytoplasmic localization of proteins is an important aspect of mycobacterial physiology and the pathogenesis of Mycobacterium tuberculosis . The protein export systems of mycobacteria have remained unexplored. The Sec-dependent protein export pathway has been well characterized in Escherichia coli and is responsible for transport across the cytoplasmic membrane of proteins containing signal sequences at their amino termini. SecA is a central component of this pathway, and it is highly conserved throughout bacteria. Here we report on an unusual property of mycobacterial protein export—the presence of two homologues of SecA (SecA1 and SecA2). Using an allelic-exchange strategy in Mycobacterium smegmatis , we demonstrate that secA1 is an essential gene. In contrast, secA2 can be deleted and is the first example of a nonessential secA homologue. The essential nature of secA1 , which is consistent with the conserved Sec pathway, leads us to believe that secA1 represents the equivalent of E. coli secA . The results of a phenotypic analysis of a Δ secA2 mutant of M. smegmatis are presented here and also indicate a role for SecA2 in protein export. Based on our study, it appears that SecA2 can assist SecA1 in the export of some proteins via the Sec pathway. However, SecA2 is not the functional equivalent of SecA1. This finding, in combination with the fact that SecA2 is highly conserved throughout mycobacteria, suggests a second role for SecA2. The possibility exists that another role for SecA2 is to export a specific subset of proteins.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3