Reaction of staphylococcal alpha-toxin with peptide-induced antibodies

Author:

Harshman S1,Alouf J E1,Siffert O1,Baleux F1

Affiliation:

1. Department of Microbiology, School of Medicine, Vanderbilt University, Nashville, Tennessee 37203.

Abstract

Two peptides representing separate 13-amino-acid sequences of staphylococcal alpha-toxin have been synthesized and acrylamide gel-purified alpha-toxin monomer and hexamer forms have been prepared and used to produce antisera in rabbits. We report here that each synthetic peptide, P-I and P-II, induces the formation of a specific precipitating antiserum. Moreover, these sera also react with the toxin monomer and sometimes with the hexamer, indicating that each peptide has more than one epitope. The purified toxin monomer can induce antibodies to fragments of toxin but is significantly less potent than the hexamer in inducing antibodies to the toxin monomer and almost not effective in inducing a response to the toxin hexamer. The purified toxin hexamer induces responses that are almost the reciprocals of the monomers, with the antihexamer and -monomer responses dominating and almost no responses to fragments of toxin being induced. These responses are interpreted in terms of the stability of the toxin hexamer to proteolytic degradation, compared with the relative sensitivity of the monomer to proteases. In assays of toxin-neutralization activity, only those sera containing antihexamer antibodies can block toxin hemolytic activity. This is true for both peptide- and toxin-induced antisera. The basis for this apparent association between toxin-neutralizing potency and antihexamer reactivity is being studied. Peptide P-I contains the uniquely reactive tyrosine residue and may be involved in monomer-to-monomer associations required to form hexamers. Peptide P-II is near the carboxyl terminus of alpha-toxin and may be involved in the binding of toxin to membranes. In a study of the ability of each peptide to inhibit the rate of hexamer formation induced by membrane lipoprotein, peptide P-I (as expected) proves to be more efficient than peptide P-II. Finally, one rabbit immunized with the toxin hexamer produces antibodies to peptides P-I and P-II. This finding suggests that the two synthetic peptides selected for study are relevant to the in vivo immunoprocessing of staphylococcal alpha-toxin.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

Reference28 articles.

1. Assay of hemolytic toxins;Bernheimer A. W.;Methods Enzymol.,1988

2. Damage to cell membranes by pore-forming bacterial cytolysins;Bhakdi S.;Prog. Allergy,1988

3. Characterization of domain borders and of a naturally occurring major fragment of staphylococcal a-toxin;Blomqvist L.;FEBS Lett.,1987

4. A staphylococcal atoxin fragment: its characterization and use for mapping biologically-active regions of a-toxin;Blomqvist L.;Acta Pathol. Microbiol. Immunol. Scand. Sect. B,1986

5. Purification of staphylococcal alpha-toxin by adsorption chromatography on glass;Cassidy P.;Infect. Immun.,1976

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3