Ultrasonically Controlled Release of Ciprofloxacin from Self-Assembled Coatings on Poly(2-Hydroxyethyl Methacrylate) Hydrogels for Pseudomonas aeruginosa Biofilm Prevention

Author:

Norris P.12,Noble M.3,Francolini I.14,Vinogradov A. M.2,Stewart P. S.1,Ratner B. D.3,Costerton J. W.15,Stoodley P.126

Affiliation:

1. Center for Biofilm Engineering, 366 EPS Building, Montana State University—Bozeman, Bozeman, Montana 59717

2. Department of Mechanical Engineering, Montana State University—Bozeman, Bozeman, Montana 59717

3. University of Washington Engineered Biomaterials, Department of Bioengineering, University of Washington, Seattle, Washington 98195-1720

4. University of Rome “La Sapienza,” Department of Chemistry, Piazzale Aldo Moro, 5-00185, Rome, Italy

5. University of Southern California, Center for Biofilms, Division 5-CHC, Los Angeles, California 90033

6. Center for Genomic Sciences, Allegheny Singer Research Institute, 320 East North Ave., Pittsburgh, Pennsylvania 15212

Abstract

ABSTRACT Indwelling prostheses and subcutaneous delivery devices are now routinely and indispensably employed in medical practice. However, these same devices often provide a highly suitable surface for bacterial adhesion and colonization, resulting in the formation of complex, differentiated, and structured communities known as biofilms. The University of Washington Engineered Biomaterials group has developed a novel drug delivery polymer matrix consisting of a poly(2-hydroxyethyl methacrylate) hydrogel coated with ordered methylene chains that form an ultrasound-responsive coating. This system was able to retain the drug ciprofloxacin inside the polymer in the absence of ultrasound but showed significant drug release when low-intensity ultrasound was applied. To assess the potential of this controlled drug delivery system for the targeting of infectious biofilms, we monitored the accumulation of Pseudomonas aeruginosa biofilms grown on hydrogels with and without ciprofloxacin and with and without exposure to ultrasound (a 43-kHz ultrasonic bath for 20 min daily) in an in vitro flow cell study. Biofilm accumulation from confocal images was quantified and statistically compared by using COMSTAT biofilm analysis software. Biofilm accumulation on ciprofloxacin-loaded hydrogels with ultrasound-induced drug delivery was significantly reduced compared to the accumulation of biofilms grown in control experiments. The results of these studies may ultimately facilitate the future development of medical devices sensitive to external ultrasonic impulses and capable of treating or preventing biofilm growth via “on-demand” drug release.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

Cited by 68 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3