Affiliation:
1. Department of Biology, East Carolina University, Greenville, North Carolina, USA
Abstract
Colonization of FeOB on corrosion-resistant stainless steel types (304SS and 316SS) has been quantified from environmental deployments along salinity gradients in estuarine environments. Greater FeOB abundance at higher salinities and on the more-corrosion-resistant 316SS suggests that there may be a higher risk of biocorrosion at higher salinities and there may be a selective advantage from certain stainless steel alloy metals, such as molybdenum, for FeOB colonization. A novel species of FeOB described here was isolated from our stainless steel coupon deployments, and its genome sequence supports our environmental data, as genes involved in the potential selectiveness toward surface colonization of stainless steel might lead to higher rates of biocorrosion of manmade aquatic infrastructure. These combined results provide environmental constraints for FeOB colonization on anthropogenic iron sources and build on previous frameworks for biocorrosion prevention strategies.
Funder
Oak Ridge Associated Universities
Publisher
American Society for Microbiology
Subject
Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献