Iron-Oxidizing Bacteria: An Environmental and Genomic Perspective

Author:

Emerson David,Fleming Emily J.,McBeth Joyce M.1

Affiliation:

1. Bigelow Laboratory for Ocean Sciences, West Boothbay Harbor, Maine 04575;

Abstract

In the 1830s, iron bacteria were among the first groups of microbes to be recognized for carrying out a fundamental geological process, namely the oxidation of iron. Due to lingering questions about their metabolism, coupled with difficulties in culturing important community members, studies of Fe-oxidizing bacteria (FeOB) have lagged behind those of other important microbial lithotrophic metabolisms. Recently, research on lithotrophic, oxygen-dependent FeOB that grow at circumneutral pH has accelerated. This work is driven by several factors including the recognition by both microbiologists and geoscientists of the role FeOB play in the biogeochemistry of iron and other elements. The isolation of new strains of obligate FeOB allowed a better understanding of their physiology and phylogeny and the realization that FeOB are abundant at certain deep-sea hydrothermal vents. These ancient microorganisms offer new opportunities to learn about fundamental biological processes that can be of practical importance.

Publisher

Annual Reviews

Subject

Microbiology

Cited by 629 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3