The fbpABC Operon Is Required for Ton-Independent Utilization of Xenosiderophores by Neisseria gonorrhoeae Strain FA19

Author:

Strange Heather R.1,Zola Tracey A.1,Cornelissen Cynthia Nau1

Affiliation:

1. Department of Microbiology and Immunology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia 23298

Abstract

ABSTRACT Neisseria gonorrhoeae produces no known siderophores but can employ host-derived, iron-binding proteins, including transferrin and lactoferrin, as iron sources. Given the propensity of this pathogen to hijack rather than synthesize iron-sequestering molecules, we hypothesized that the ability to use siderophores produced by other bacteria, or xenosiderophores, may also play a role in the survival of the gonococcus. Among a panel of diverse siderophores, only the catecholate xenosiderophores enterobactin and salmochelin promoted growth of gonococcal strain FA19. Surprisingly, the internalization pathway was independent of TonB or any of the TonB-dependent transporters. Xenosiderophore-mediated growth was similarly independent of the pilin-extruding secretin formed by PilQ and of the hydrophobic-agent efflux system composed of MtrCDE. The fbpABC operon encodes a periplasmic-binding-protein-dependent ABC transport system that enables the gonococcus to transport iron into the cell subsequent to outer membrane translocation. We hypothesized that the FbpABC proteins, required for ferric iron transport from transferrin and lactoferrin, might also contribute to the utilization of xenosiderophores as iron sources. We created mutants that conditionally expressed FbpABC from an IPTG-inducible promoter. We determined that expression of FbpABC was required for growth of gonococcal strain FA19 in the presence of enterobactin and salmochelin. The monomeric component of enterobactin, dihydroxybenzoylserine (DHBS), and the S2 form of salmochelin specifically promoted FbpABC-dependent growth of FA19. This study demonstrated that the gonococcal FbpABC transport system is required for utilization of some xenosiderophores as iron sources and that growth promotion by these ferric siderophores can occur in the absence of TonB or individual TonB-dependent transporters.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3