E1 Enzyme of the Pyruvate Dehydrogenase Complex in Corynebacterium glutamicum : Molecular Analysis of the Gene and Phylogenetic Aspects

Author:

Schreiner Mark E.1,Fiur Diana1,Holátko Jiří1,Pátek Miroslav1,Eikmanns Bernhard J.1

Affiliation:

1. Department of Microbiology and Biotechnology, University of Ulm, 89069 Ulm, Germany

Abstract

ABSTRACT The E1p enzyme is an essential part of the pyruvate dehydrogenase complex (PDHC) and catalyzes the oxidative decarboxylation of pyruvate with concomitant acetylation of the E2p enzyme within the complex. We analyzed the Corynebacterium glutamicum aceE gene, encoding the E1p enzyme, and constructed and characterized an E1p-deficient mutant. Sequence analysis of the C. glutamicum aceE gene and adjacent regions revealed that aceE is not flanked by genes encoding other enzymes of the PDHC. Transcriptional analysis revealed that aceE from C. glutamicum is monocistronic and that its transcription is initiated 121 nucleotides upstream of the translational start site. Inactivation of the chromosomal aceE gene led to the inability to grow on glucose and to the absence of PDHC and E1p activities, indicating that only a single E1p enzyme is present in C. glutamicum and that the PDHC is essential for the growth of this organism on carbohydrate substrates. Surprisingly, the E1p enzyme of C. glutamicum showed up to 51% identity to homodimeric E1p proteins from gram-negative bacteria but no similarity to E1 α- or β-subunits of heterotetrameric E1p enzymes which are generally assumed to be typical for gram-positives. To investigate the distribution of E1p enzymes in bacteria, we compiled and analyzed the phylogeny of 46 homodimeric E1p proteins and of 58 α-subunits of heterotetrameric E1p proteins deposited in public databases. The results revealed that the distribution of homodimeric and heterotetrameric E1p subunits in bacteria is not in accordance with the rRNA-based phylogeny of bacteria and is more heterogeneous than previously assumed.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3