Corynebacterium glutamicum pyruvate:quinone oxidoreductase: an enigmatic metabolic enzyme with unusual structural features

Author:

da Silva Lameira Cristiano1ORCID,Münßinger Sini1ORCID,Yang Lu2ORCID,Eikmanns Bernhard J.1ORCID,Bellinzoni Marco2ORCID

Affiliation:

1. Institute of Molecular Biology and Biotechnology of Prokaryotes University of Ulm Germany

2. Institut Pasteur, Université Paris Cité, CNRS UMR3528, Unité de Microbiologie Structurale Paris France

Abstract

Pyruvate:quinone oxidoreductase (PQO) is a flavin‐containing peripheral membrane enzyme catalyzing the decarboxylation of pyruvate to acetate and CO2 with quinone as an electron acceptor. Here, we investigate PQO activity in Corynebacterium glutamicum, examine purified PQO, and describe the crystal structure of the native enzyme and a truncated version. The specific PQO activity was highest in stationary phase cells grown in complex medium, lower in cells grown in complex medium containing glucose or acetate, and lowest in cells grown in minimal acetate‐medium. A similar pattern with about 30‐fold higher specific PQO activities was observed in C. glutamicum with plasmid‐bound pqo expression under the control of the tac promoter, indicating that the differences in PQO activity are likely due to post‐transcriptional control. Continuous cultivation of C. glutamicum at dilution rates between 0.05 and 0.4 h−1 revealed a negative correlation between PQO activity and growth rate. Kinetic analysis of PQO enzymes purified from cells grown in complex or in minimal acetate‐medium revealed substantial differences in specific activity (72.3 vs. 11.9 U·mg protein−1) and turnover number (kcat: 440 vs. 78 s−1, respectively), suggesting post‐translational modifications affecting PQO activity. Structural analysis of PQO revealed a homotetrameric arrangement very similar to the Escherichia coli pyruvate oxidase PoxB except for the C‐terminal membrane binding domain, which exhibited a conformation markedly different from its PoxB counterpart. A truncated PQO variant lacking 17 C‐terminal amino acids showed higher affinity to pyruvate and was independent of detergent activation, highlighting the importance of the C‐terminus for enzyme activation and lipid binding.

Funder

Agence Nationale de la Recherche

Deutsche Forschungsgemeinschaft

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3