In Vivo Analysis of Functional Regions within Yeast Rap1p

Author:

Graham Ian R.1,Haw Robin A.1,Spink Karen G.1,Halden Kathryn A.1,Chambers Alistair1

Affiliation:

1. Institute of Genetics, University of Nottingham, Queen’s Medical Centre, Nottingham NG7 2UH, United Kingdom

Abstract

ABSTRACT We have analyzed the in vivo importance of different regions of Rap1p, a yeast transcriptional regulator and telomere binding protein. A yeast strain (SCR101) containing a regulatable RAP1 gene was used to test functional complementation by a range of Rap1p derivatives. These experiments demonstrated that the C terminus of the protein, containing the putative transcriptional activation domain and the regions involved in silencing and telomere function, is not absolutely essential for cell growth, a result confirmed by sporulation of a diploid strain containing a C terminal deletion derivative of RAP1 . Northern analysis with cells that expressed Rap1p lacking the transcriptional activation domain revealed that this region is important for the expression of only a subset of Rap1p-activated genes. The one essential region within Rap1p is the DNA binding domain. We have investigated the possibility that this region has additional functions. It contains two Myb-like subdomains separated by a linker region. Individual point mutations in the linker region had no effect on Rap1p function, although deletion of the region abolished cell growth. The second Myb-like subdomain contains a large unstructured loop of unknown function. Domain swap experiments with combinations of elements from DNA binding domains of Rap1p homologues from different yeasts revealed that major changes can be made to the amino acid composition of this region without affecting Rap1p function.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3