Fosfomycin Enhances the Active Transport of Tobramycin in Pseudomonas aeruginosa

Author:

MacLeod David L.1,Velayudhan Jyoti1,Kenney Thomas F.1,Therrien Joseph H.1,Sutherland Jennifer L.1,Barker Lynn M.1,Baker William R.1

Affiliation:

1. Gilead Sciences, Inc., Seattle, Washington, USA

Abstract

ABSTRACT Elevated levels of mucins present in bronchiectatic airways predispose patients to bacterial infections and reduce the effectiveness of antibiotic therapies by directly inactivating antibiotics. Consequently, new antibiotics that are not inhibited by mucins are needed to treat chronic respiratory infections caused by Pseudomonas aeruginosa and Staphylococcus aureus . In these studies, we demonstrate that fosfomycin synergistically enhances the activity of tobramycin in the presence of mucin. The bactericidal killing of a novel 4:1 (wt/wt) combination of fosfomycin-tobramycin (FTI) is superior (>9 log 10 CFU/ml) relative to its individual components fosfomycin and tobramycin. Additionally, FTI has a mutation frequency resulting in an antibiotic resistance >3 log 10 lower than for fosfomycin and 4 log 10 lower than for tobramycin for P. aeruginosa . Mechanistic studies revealed that chemical adducts are not formed, suggesting that the beneficial effects of the combination are not due to molecular modification of the components. FTI displayed time-kill kinetics similar to tobramycin and killed in a concentration-dependent fashion. The bactericidal effect resulted from inhibition of protein biosynthesis rather than cell wall biosynthesis. Studies using radiolabeled antibiotics demonstrated that tobramycin uptake was energy dependent and that fosfomycin enhanced the uptake of tobramycin in P. aeruginosa in a dose-dependent manner. Lastly, mutants resistant to fosfomycin and tobramycin were auxotrophic for specific carbohydrates and amino acids, suggesting that the resistance arises from mutations in specific active transport mechanisms. Overall, these data demonstrate that fosfomycin enhances the uptake of tobramycin, resulting in increased inhibition of protein synthesis and ultimately bacterial killing.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3