An Avian Influenza H5N1 Virus That Binds to a Human-Type Receptor

Author:

Auewarakul Prasert1,Suptawiwat Ornpreya1,Kongchanagul Alita1,Sangma Chak2,Suzuki Yasuo3,Ungchusak Kumnuan4,Louisirirotchanakul Suda1,Lerdsamran Hatairat1,Pooruk Phisanu1,Thitithanyanont Arunee5,Pittayawonganon Chakrarat4,Guo Chao-Tan3,Hiramatsu Hiroaki3,Jampangern Wipawee6,Chunsutthiwat Supamit7,Puthavathana Pilaipan1

Affiliation:

1. Faculty of Medicine, Siriraj Hospital

2. Faculty of Science, Kasetsart University, Bangkok, Thailand

3. College of Life and Health Sciences, Chubu University, Kasugai, Japan

4. Mahidol University, Bangkok, Thailand; Bureau of Epidemiology

5. Faculty of Science

6. Faculty of Tropical Medicine

7. Department of Disease Control, Bangkok, Thailand

Abstract

ABSTRACT Avian influenza viruses preferentially recognize sialosugar chains terminating in sialic acid-α2,3-galactose (SAα2,3Gal), whereas human influenza viruses preferentially recognize SAα2,6Gal. A conversion to SAα2,6Gal specificity is believed to be one of the changes required for the introduction of new hemagglutinin (HA) subtypes to the human population, which can lead to pandemics. Avian influenza H5N1 virus is a major threat for the emergence of a pandemic virus. As of 12 June 2007, the virus has been reported in 45 countries, and 312 human cases with 190 deaths have been confirmed. We describe here substitutions at position 129 and 134 identified in a virus isolated from a fatal human case that could change the receptor-binding preference of HA of H5N1 virus from SAα2,3Gal to both SAα2,3Gal and SAα2,6Gal. Molecular modeling demonstrated that the mutation may stabilize SAα2,6Gal in its optimal cis conformation in the binding pocket. The mutation was found in approximately half of the viral sequences directly amplified from a respiratory specimen of the patient. Our data confirm the presence of H5N1 virus with the ability to bind to a human-type receptor in this patient and suggest the selection and expansion of the mutant with human-type receptor specificity in the human host environment.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3